MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngorz Structured version   Unicode version

Theorem rngorz 23889
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringlz.1  |-  Z  =  (GId `  G )
ringlz.2  |-  X  =  ran  G
ringlz.3  |-  G  =  ( 1st `  R
)
ringlz.4  |-  H  =  ( 2nd `  R
)
Assertion
Ref Expression
rngorz  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  =  Z )

Proof of Theorem rngorz
StepHypRef Expression
1 ringlz.3 . . . . . . 7  |-  G  =  ( 1st `  R
)
21rngogrpo 23877 . . . . . 6  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
3 ringlz.2 . . . . . . . 8  |-  X  =  ran  G
4 ringlz.1 . . . . . . . 8  |-  Z  =  (GId `  G )
53, 4grpoidcl 23704 . . . . . . 7  |-  ( G  e.  GrpOp  ->  Z  e.  X )
63, 4grpolid 23706 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  Z  e.  X )  ->  ( Z G Z )  =  Z )
75, 6mpdan 668 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( Z G Z )  =  Z )
82, 7syl 16 . . . . 5  |-  ( R  e.  RingOps  ->  ( Z G Z )  =  Z )
98adantr 465 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( Z G Z )  =  Z )
109oveq2d 6107 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( Z G Z ) )  =  ( A H Z ) )
11 simpr 461 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  A  e.  X )
121, 3, 4rngo0cl 23885 . . . . . 6  |-  ( R  e.  RingOps  ->  Z  e.  X
)
1312adantr 465 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  Z  e.  X )
1411, 13, 133jca 1168 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A  e.  X  /\  Z  e.  X  /\  Z  e.  X )
)
15 ringlz.4 . . . . 5  |-  H  =  ( 2nd `  R
)
161, 15, 3rngodi 23872 . . . 4  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  Z  e.  X  /\  Z  e.  X )
)  ->  ( A H ( Z G Z ) )  =  ( ( A H Z ) G ( A H Z ) ) )
1714, 16syldan 470 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( Z G Z ) )  =  ( ( A H Z ) G ( A H Z ) ) )
182adantr 465 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  G  e.  GrpOp )
191, 15, 3rngocl 23869 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  Z  e.  X )  ->  ( A H Z )  e.  X )
2013, 19mpd3an3 1315 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  e.  X )
213, 4grpolid 23706 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A H Z )  e.  X )  ->  ( Z G ( A H Z ) )  =  ( A H Z ) )
2221eqcomd 2448 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A H Z )  e.  X )  ->  ( A H Z )  =  ( Z G ( A H Z ) ) )
2318, 20, 22syl2anc 661 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  =  ( Z G ( A H Z ) ) )
2410, 17, 233eqtr3d 2483 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( A H Z ) G ( A H Z ) )  =  ( Z G ( A H Z ) ) )
253grporcan 23708 . . 3  |-  ( ( G  e.  GrpOp  /\  (
( A H Z )  e.  X  /\  Z  e.  X  /\  ( A H Z )  e.  X ) )  ->  ( ( ( A H Z ) G ( A H Z ) )  =  ( Z G ( A H Z ) )  <->  ( A H Z )  =  Z ) )
2618, 20, 13, 20, 25syl13anc 1220 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( ( A H Z ) G ( A H Z ) )  =  ( Z G ( A H Z ) )  <->  ( A H Z )  =  Z ) )
2724, 26mpbid 210 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  =  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ran crn 4841   ` cfv 5418  (class class class)co 6091   1stc1st 6575   2ndc2nd 6576   GrpOpcgr 23673  GIdcgi 23674   RingOpscrngo 23862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-fo 5424  df-fv 5426  df-riota 6052  df-ov 6094  df-1st 6577  df-2nd 6578  df-grpo 23678  df-gid 23679  df-ablo 23769  df-rngo 23863
This theorem is referenced by:  rngoueqz  23917  zerdivemp1  23921  rngoridfz  23922  rngonegmn1r  28756  zerdivemp1x  28761  0idl  28825  keridl  28832
  Copyright terms: Public domain W3C validator