MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngorz Unicode version

Theorem rngorz 21943
Description: The zero of a unital ring is a right absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringlz.1  |-  Z  =  (GId `  G )
ringlz.2  |-  X  =  ran  G
ringlz.3  |-  G  =  ( 1st `  R
)
ringlz.4  |-  H  =  ( 2nd `  R
)
Assertion
Ref Expression
rngorz  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  =  Z )

Proof of Theorem rngorz
StepHypRef Expression
1 ringlz.3 . . . . . . 7  |-  G  =  ( 1st `  R
)
21rngogrpo 21931 . . . . . 6  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
3 ringlz.2 . . . . . . . 8  |-  X  =  ran  G
4 ringlz.1 . . . . . . . 8  |-  Z  =  (GId `  G )
53, 4grpoidcl 21758 . . . . . . 7  |-  ( G  e.  GrpOp  ->  Z  e.  X )
63, 4grpolid 21760 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  Z  e.  X )  ->  ( Z G Z )  =  Z )
75, 6mpdan 650 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( Z G Z )  =  Z )
82, 7syl 16 . . . . 5  |-  ( R  e.  RingOps  ->  ( Z G Z )  =  Z )
98adantr 452 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( Z G Z )  =  Z )
109oveq2d 6056 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( Z G Z ) )  =  ( A H Z ) )
11 simpr 448 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  A  e.  X )
121, 3, 4rngo0cl 21939 . . . . . 6  |-  ( R  e.  RingOps  ->  Z  e.  X
)
1312adantr 452 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  Z  e.  X )
1411, 13, 133jca 1134 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A  e.  X  /\  Z  e.  X  /\  Z  e.  X )
)
15 ringlz.4 . . . . 5  |-  H  =  ( 2nd `  R
)
161, 15, 3rngodi 21926 . . . 4  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  Z  e.  X  /\  Z  e.  X )
)  ->  ( A H ( Z G Z ) )  =  ( ( A H Z ) G ( A H Z ) ) )
1714, 16syldan 457 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( Z G Z ) )  =  ( ( A H Z ) G ( A H Z ) ) )
182adantr 452 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  G  e.  GrpOp )
191, 15, 3rngocl 21923 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  Z  e.  X )  ->  ( A H Z )  e.  X )
2013, 19mpd3an3 1280 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  e.  X )
213, 4grpolid 21760 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A H Z )  e.  X )  ->  ( Z G ( A H Z ) )  =  ( A H Z ) )
2221eqcomd 2409 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A H Z )  e.  X )  ->  ( A H Z )  =  ( Z G ( A H Z ) ) )
2318, 20, 22syl2anc 643 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  =  ( Z G ( A H Z ) ) )
2410, 17, 233eqtr3d 2444 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( A H Z ) G ( A H Z ) )  =  ( Z G ( A H Z ) ) )
253grporcan 21762 . . 3  |-  ( ( G  e.  GrpOp  /\  (
( A H Z )  e.  X  /\  Z  e.  X  /\  ( A H Z )  e.  X ) )  ->  ( ( ( A H Z ) G ( A H Z ) )  =  ( Z G ( A H Z ) )  <->  ( A H Z )  =  Z ) )
2618, 20, 13, 20, 25syl13anc 1186 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( ( A H Z ) G ( A H Z ) )  =  ( Z G ( A H Z ) )  <->  ( A H Z )  =  Z ) )
2724, 26mpbid 202 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ran crn 4838   ` cfv 5413  (class class class)co 6040   1stc1st 6306   2ndc2nd 6307   GrpOpcgr 21727  GIdcgi 21728   RingOpscrngo 21916
This theorem is referenced by:  rngoueqz  21971  zerdivemp1  21975  rngoridfz  21976  rngonegmn1r  26456  zerdivemp1x  26461  0idl  26525  keridl  26532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fo 5419  df-fv 5421  df-ov 6043  df-1st 6308  df-2nd 6309  df-riota 6508  df-grpo 21732  df-gid 21733  df-ablo 21823  df-rngo 21917
  Copyright terms: Public domain W3C validator