MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngorn1eq Structured version   Unicode version

Theorem rngorn1eq 25098
Description: In a unital ring the range of the addition equals the range of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnplrnml0.1  |-  H  =  ( 2nd `  R
)
rnplrnml0.2  |-  G  =  ( 1st `  R
)
Assertion
Ref Expression
rngorn1eq  |-  ( R  e.  RingOps  ->  ran  G  =  ran  H )

Proof of Theorem rngorn1eq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnplrnml0.2 . . . 4  |-  G  =  ( 1st `  R
)
2 rnplrnml0.1 . . . 4  |-  H  =  ( 2nd `  R
)
3 eqid 2467 . . . 4  |-  ran  G  =  ran  G
41, 2, 3rngosm 25059 . . 3  |-  ( R  e.  RingOps  ->  H : ( ran  G  X.  ran  G ) --> ran  G )
51, 2, 3rngoi 25058 . . . 4  |-  ( R  e.  RingOps  ->  ( ( G  e.  AbelOp  /\  H :
( ran  G  X.  ran  G ) --> ran  G
)  /\  ( A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e. 
ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  (
y H x )  =  y ) ) ) )
6 simprr 756 . . . 4  |-  ( ( ( G  e.  AbelOp  /\  H : ( ran 
G  X.  ran  G
) --> ran  G )  /\  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) )  ->  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) )
75, 6syl 16 . . 3  |-  ( R  e.  RingOps  ->  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) )
8 rngmgmbs4 25095 . . 3  |-  ( ( H : ( ran 
G  X.  ran  G
) --> ran  G  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) )  ->  ran  H  =  ran  G )
94, 7, 8syl2anc 661 . 2  |-  ( R  e.  RingOps  ->  ran  H  =  ran  G )
109eqcomd 2475 1  |-  ( R  e.  RingOps  ->  ran  G  =  ran  H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    X. cxp 4997   ran crn 5000   -->wf 5582   ` cfv 5586  (class class class)co 6282   1stc1st 6779   2ndc2nd 6780   AbelOpcablo 24959   RingOpscrngo 25053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fo 5592  df-fv 5594  df-ov 6285  df-1st 6781  df-2nd 6782  df-rngo 25054
This theorem is referenced by:  rngoidmlem  25101  rngo1cl  25107  isdrngo2  29964
  Copyright terms: Public domain W3C validator