MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngorcan Structured version   Unicode version

Theorem rngorcan 24062
Description: Right cancellation law for the addition operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringgcl.1  |-  G  =  ( 1st `  R
)
ringgcl.2  |-  X  =  ran  G
Assertion
Ref Expression
rngorcan  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )

Proof of Theorem rngorcan
StepHypRef Expression
1 ringgcl.1 . . 3  |-  G  =  ( 1st `  R
)
21rngogrpo 24056 . 2  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
3 ringgcl.2 . . 3  |-  X  =  ran  G
43grporcan 23887 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )
52, 4sylan 471 1  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   ran crn 4952   ` cfv 5529  (class class class)co 6203   1stc1st 6688   GrpOpcgr 23852   RingOpscrngo 24041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-fo 5535  df-fv 5537  df-riota 6164  df-ov 6206  df-1st 6690  df-2nd 6691  df-grpo 23857  df-gid 23858  df-ablo 23948  df-rngo 24042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator