Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegmn1r Structured version   Unicode version

Theorem rngonegmn1r 30519
Description: Negation in a ring is the same as right multiplication by  -u 1. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringneg.1  |-  G  =  ( 1st `  R
)
ringneg.2  |-  H  =  ( 2nd `  R
)
ringneg.3  |-  X  =  ran  G
ringneg.4  |-  N  =  ( inv `  G
)
ringneg.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
rngonegmn1r  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  =  ( A H ( N `  U
) ) )

Proof of Theorem rngonegmn1r
StepHypRef Expression
1 ringneg.3 . . . . . . . . 9  |-  X  =  ran  G
2 ringneg.1 . . . . . . . . . 10  |-  G  =  ( 1st `  R
)
32rneqi 5142 . . . . . . . . 9  |-  ran  G  =  ran  ( 1st `  R
)
41, 3eqtri 2411 . . . . . . . 8  |-  X  =  ran  ( 1st `  R
)
5 ringneg.2 . . . . . . . 8  |-  H  =  ( 2nd `  R
)
6 ringneg.5 . . . . . . . 8  |-  U  =  (GId `  H )
74, 5, 6rngo1cl 25548 . . . . . . 7  |-  ( R  e.  RingOps  ->  U  e.  X
)
8 ringneg.4 . . . . . . . 8  |-  N  =  ( inv `  G
)
92, 1, 8rngonegcl 30514 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  U  e.  X )  ->  ( N `  U )  e.  X )
107, 9mpdan 666 . . . . . 6  |-  ( R  e.  RingOps  ->  ( N `  U )  e.  X
)
1110adantr 463 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  U )  e.  X )
127adantr 463 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  U  e.  X )
1311, 12jca 530 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  U
)  e.  X  /\  U  e.  X )
)
142, 5, 1rngodi 25504 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  ( N `  U )  e.  X  /\  U  e.  X ) )  -> 
( A H ( ( N `  U
) G U ) )  =  ( ( A H ( N `
 U ) ) G ( A H U ) ) )
15143exp2 1212 . . . . 5  |-  ( R  e.  RingOps  ->  ( A  e.  X  ->  ( ( N `  U )  e.  X  ->  ( U  e.  X  ->  ( A H ( ( N `
 U ) G U ) )  =  ( ( A H ( N `  U
) ) G ( A H U ) ) ) ) ) )
1615imp43 593 . . . 4  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  ( ( N `  U )  e.  X  /\  U  e.  X
) )  ->  ( A H ( ( N `
 U ) G U ) )  =  ( ( A H ( N `  U
) ) G ( A H U ) ) )
1713, 16mpdan 666 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( ( N `
 U ) G U ) )  =  ( ( A H ( N `  U
) ) G ( A H U ) ) )
18 eqid 2382 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
192, 1, 8, 18rngoaddneg2 30516 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  U  e.  X )  ->  (
( N `  U
) G U )  =  (GId `  G
) )
207, 19mpdan 666 . . . . . 6  |-  ( R  e.  RingOps  ->  ( ( N `
 U ) G U )  =  (GId
`  G ) )
2120adantr 463 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  U
) G U )  =  (GId `  G
) )
2221oveq2d 6212 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( ( N `
 U ) G U ) )  =  ( A H (GId
`  G ) ) )
2318, 1, 2, 5rngorz 25521 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H (GId `  G
) )  =  (GId
`  G ) )
2422, 23eqtrd 2423 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( ( N `
 U ) G U ) )  =  (GId `  G )
)
255, 4, 6rngoridm 25544 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H U )  =  A )
2625oveq2d 6212 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( A H ( N `  U ) ) G ( A H U ) )  =  ( ( A H ( N `  U ) ) G A ) )
2717, 24, 263eqtr3rd 2432 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( A H ( N `  U ) ) G A )  =  (GId `  G
) )
282, 5, 1rngocl 25501 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  ( N `  U )  e.  X )  ->  ( A H ( N `  U ) )  e.  X )
2911, 28mpd3an3 1323 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( N `  U ) )  e.  X )
302rngogrpo 25509 . . . 4  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
311, 18, 8grpoinvid2 25350 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( A H ( N `  U ) )  e.  X )  ->  (
( N `  A
)  =  ( A H ( N `  U ) )  <->  ( ( A H ( N `  U ) ) G A )  =  (GId
`  G ) ) )
3230, 31syl3an1 1259 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  ( A H ( N `  U ) )  e.  X )  ->  (
( N `  A
)  =  ( A H ( N `  U ) )  <->  ( ( A H ( N `  U ) ) G A )  =  (GId
`  G ) ) )
3329, 32mpd3an3 1323 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  A
)  =  ( A H ( N `  U ) )  <->  ( ( A H ( N `  U ) ) G A )  =  (GId
`  G ) ) )
3427, 33mpbird 232 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  =  ( A H ( N `  U
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826   ran crn 4914   ` cfv 5496  (class class class)co 6196   1stc1st 6697   2ndc2nd 6698   GrpOpcgr 25305  GIdcgi 25306   invcgn 25307   RingOpscrngo 25494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-1st 6699  df-2nd 6700  df-grpo 25310  df-gid 25311  df-ginv 25312  df-ablo 25401  df-ass 25432  df-exid 25434  df-mgmOLD 25438  df-sgrOLD 25450  df-mndo 25457  df-rngo 25495
This theorem is referenced by:  rngonegrmul  30521
  Copyright terms: Public domain W3C validator