Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegmn1l Structured version   Unicode version

Theorem rngonegmn1l 28664
Description: Negation in a ring is the same as left multiplication by  -u 1. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ringneg.1  |-  G  =  ( 1st `  R
)
ringneg.2  |-  H  =  ( 2nd `  R
)
ringneg.3  |-  X  =  ran  G
ringneg.4  |-  N  =  ( inv `  G
)
ringneg.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
rngonegmn1l  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  =  ( ( N `
 U ) H A ) )

Proof of Theorem rngonegmn1l
StepHypRef Expression
1 ringneg.3 . . . . . . . 8  |-  X  =  ran  G
2 ringneg.1 . . . . . . . . 9  |-  G  =  ( 1st `  R
)
32rneqi 5062 . . . . . . . 8  |-  ran  G  =  ran  ( 1st `  R
)
41, 3eqtri 2461 . . . . . . 7  |-  X  =  ran  ( 1st `  R
)
5 ringneg.2 . . . . . . 7  |-  H  =  ( 2nd `  R
)
6 ringneg.5 . . . . . . 7  |-  U  =  (GId `  H )
74, 5, 6rngo1cl 23835 . . . . . 6  |-  ( R  e.  RingOps  ->  U  e.  X
)
8 ringneg.4 . . . . . . . 8  |-  N  =  ( inv `  G
)
92, 1, 8rngonegcl 28660 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  U  e.  X )  ->  ( N `  U )  e.  X )
107, 9mpdan 663 . . . . . 6  |-  ( R  e.  RingOps  ->  ( N `  U )  e.  X
)
117, 10jca 529 . . . . 5  |-  ( R  e.  RingOps  ->  ( U  e.  X  /\  ( N `
 U )  e.  X ) )
1211adantr 462 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U  e.  X  /\  ( N `  U )  e.  X ) )
132, 5, 1rngodir 23792 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  ( U  e.  X  /\  ( N `  U )  e.  X  /\  A  e.  X ) )  -> 
( ( U G ( N `  U
) ) H A )  =  ( ( U H A ) G ( ( N `
 U ) H A ) ) )
14133exp2 1200 . . . . . 6  |-  ( R  e.  RingOps  ->  ( U  e.  X  ->  ( ( N `  U )  e.  X  ->  ( A  e.  X  ->  (
( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) ) ) ) )
1514imp42 591 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  ( U  e.  X  /\  ( N `  U
)  e.  X ) )  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) )
1615an32s 797 . . . 4  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  ( U  e.  X  /\  ( N `  U
)  e.  X ) )  ->  ( ( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) )
1712, 16mpdan 663 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) )
18 eqid 2441 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
192, 1, 8, 18rngoaddneg1 28661 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  U  e.  X )  ->  ( U G ( N `  U ) )  =  (GId `  G )
)
207, 19mpdan 663 . . . . . 6  |-  ( R  e.  RingOps  ->  ( U G ( N `  U
) )  =  (GId
`  G ) )
2120adantr 462 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U G ( N `  U ) )  =  (GId `  G )
)
2221oveq1d 6105 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  ( (GId `  G ) H A ) )
2318, 1, 2, 5rngolz 23807 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
(GId `  G ) H A )  =  (GId
`  G ) )
2422, 23eqtrd 2473 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  (GId `  G
) )
255, 4, 6rngolidm 23830 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U H A )  =  A )
2625oveq1d 6105 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U H A ) G ( ( N `  U ) H A ) )  =  ( A G ( ( N `  U ) H A ) ) )
2717, 24, 263eqtr3rd 2482 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A G ( ( N `
 U ) H A ) )  =  (GId `  G )
)
2810adantr 462 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  U )  e.  X )
292, 5, 1rngocl 23788 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( N `  U )  e.  X  /\  A  e.  X )  ->  (
( N `  U
) H A )  e.  X )
30293expa 1182 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  ( N `  U )  e.  X )  /\  A  e.  X )  ->  ( ( N `  U ) H A )  e.  X )
3130an32s 797 . . . 4  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  ( N `  U
)  e.  X )  ->  ( ( N `
 U ) H A )  e.  X
)
3228, 31mpdan 663 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  U
) H A )  e.  X )
332rngogrpo 23796 . . . 4  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
341, 18, 8grpoinvid1 23636 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  (
( N `  U
) H A )  e.  X )  -> 
( ( N `  A )  =  ( ( N `  U
) H A )  <-> 
( A G ( ( N `  U
) H A ) )  =  (GId `  G ) ) )
3533, 34syl3an1 1246 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  (
( N `  U
) H A )  e.  X )  -> 
( ( N `  A )  =  ( ( N `  U
) H A )  <-> 
( A G ( ( N `  U
) H A ) )  =  (GId `  G ) ) )
3632, 35mpd3an3 1310 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  A
)  =  ( ( N `  U ) H A )  <->  ( A G ( ( N `
 U ) H A ) )  =  (GId `  G )
) )
3727, 36mpbird 232 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  =  ( ( N `
 U ) H A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   ran crn 4837   ` cfv 5415  (class class class)co 6090   1stc1st 6574   2ndc2nd 6575   GrpOpcgr 23592  GIdcgi 23593   invcgn 23594   RingOpscrngo 23781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-1st 6576  df-2nd 6577  df-grpo 23597  df-gid 23598  df-ginv 23599  df-ablo 23688  df-ass 23719  df-exid 23721  df-mgm 23725  df-sgr 23737  df-mndo 23744  df-rngo 23782
This theorem is referenced by:  rngoneglmul  28666  idlnegcl  28731
  Copyright terms: Public domain W3C validator