Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegmn1l Structured version   Unicode version

Theorem rngonegmn1l 30514
Description: Negation in a ring is the same as left multiplication by  -u 1. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ringneg.1  |-  G  =  ( 1st `  R
)
ringneg.2  |-  H  =  ( 2nd `  R
)
ringneg.3  |-  X  =  ran  G
ringneg.4  |-  N  =  ( inv `  G
)
ringneg.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
rngonegmn1l  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  =  ( ( N `
 U ) H A ) )

Proof of Theorem rngonegmn1l
StepHypRef Expression
1 ringneg.3 . . . . . . . 8  |-  X  =  ran  G
2 ringneg.1 . . . . . . . . 9  |-  G  =  ( 1st `  R
)
32rneqi 5239 . . . . . . . 8  |-  ran  G  =  ran  ( 1st `  R
)
41, 3eqtri 2486 . . . . . . 7  |-  X  =  ran  ( 1st `  R
)
5 ringneg.2 . . . . . . 7  |-  H  =  ( 2nd `  R
)
6 ringneg.5 . . . . . . 7  |-  U  =  (GId `  H )
74, 5, 6rngo1cl 25557 . . . . . 6  |-  ( R  e.  RingOps  ->  U  e.  X
)
8 ringneg.4 . . . . . . . 8  |-  N  =  ( inv `  G
)
92, 1, 8rngonegcl 30510 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  U  e.  X )  ->  ( N `  U )  e.  X )
107, 9mpdan 668 . . . . . 6  |-  ( R  e.  RingOps  ->  ( N `  U )  e.  X
)
117, 10jca 532 . . . . 5  |-  ( R  e.  RingOps  ->  ( U  e.  X  /\  ( N `
 U )  e.  X ) )
1211adantr 465 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U  e.  X  /\  ( N `  U )  e.  X ) )
132, 5, 1rngodir 25514 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  ( U  e.  X  /\  ( N `  U )  e.  X  /\  A  e.  X ) )  -> 
( ( U G ( N `  U
) ) H A )  =  ( ( U H A ) G ( ( N `
 U ) H A ) ) )
14133exp2 1214 . . . . . 6  |-  ( R  e.  RingOps  ->  ( U  e.  X  ->  ( ( N `  U )  e.  X  ->  ( A  e.  X  ->  (
( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) ) ) ) )
1514imp42 594 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  ( U  e.  X  /\  ( N `  U
)  e.  X ) )  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) )
1615an32s 804 . . . 4  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  ( U  e.  X  /\  ( N `  U
)  e.  X ) )  ->  ( ( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) )
1712, 16mpdan 668 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) )
18 eqid 2457 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
192, 1, 8, 18rngoaddneg1 30511 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  U  e.  X )  ->  ( U G ( N `  U ) )  =  (GId `  G )
)
207, 19mpdan 668 . . . . . 6  |-  ( R  e.  RingOps  ->  ( U G ( N `  U
) )  =  (GId
`  G ) )
2120adantr 465 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U G ( N `  U ) )  =  (GId `  G )
)
2221oveq1d 6311 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  ( (GId `  G ) H A ) )
2318, 1, 2, 5rngolz 25529 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
(GId `  G ) H A )  =  (GId
`  G ) )
2422, 23eqtrd 2498 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  (GId `  G
) )
255, 4, 6rngolidm 25552 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U H A )  =  A )
2625oveq1d 6311 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U H A ) G ( ( N `  U ) H A ) )  =  ( A G ( ( N `  U ) H A ) ) )
2717, 24, 263eqtr3rd 2507 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A G ( ( N `
 U ) H A ) )  =  (GId `  G )
)
2810adantr 465 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  U )  e.  X )
292, 5, 1rngocl 25510 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( N `  U )  e.  X  /\  A  e.  X )  ->  (
( N `  U
) H A )  e.  X )
30293expa 1196 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  ( N `  U )  e.  X )  /\  A  e.  X )  ->  ( ( N `  U ) H A )  e.  X )
3130an32s 804 . . . 4  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  ( N `  U
)  e.  X )  ->  ( ( N `
 U ) H A )  e.  X
)
3228, 31mpdan 668 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  U
) H A )  e.  X )
332rngogrpo 25518 . . . 4  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
341, 18, 8grpoinvid1 25358 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  (
( N `  U
) H A )  e.  X )  -> 
( ( N `  A )  =  ( ( N `  U
) H A )  <-> 
( A G ( ( N `  U
) H A ) )  =  (GId `  G ) ) )
3533, 34syl3an1 1261 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  (
( N `  U
) H A )  e.  X )  -> 
( ( N `  A )  =  ( ( N `  U
) H A )  <-> 
( A G ( ( N `  U
) H A ) )  =  (GId `  G ) ) )
3632, 35mpd3an3 1325 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  A
)  =  ( ( N `  U ) H A )  <->  ( A G ( ( N `
 U ) H A ) )  =  (GId `  G )
) )
3727, 36mpbird 232 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  =  ( ( N `
 U ) H A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   ran crn 5009   ` cfv 5594  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   GrpOpcgr 25314  GIdcgi 25315   invcgn 25316   RingOpscrngo 25503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-1st 6799  df-2nd 6800  df-grpo 25319  df-gid 25320  df-ginv 25321  df-ablo 25410  df-ass 25441  df-exid 25443  df-mgmOLD 25447  df-sgrOLD 25459  df-mndo 25466  df-rngo 25504
This theorem is referenced by:  rngoneglmul  30516  idlnegcl  30581
  Copyright terms: Public domain W3C validator