Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegmn1l Structured version   Unicode version

Theorem rngonegmn1l 29971
Description: Negation in a ring is the same as left multiplication by  -u 1. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ringneg.1  |-  G  =  ( 1st `  R
)
ringneg.2  |-  H  =  ( 2nd `  R
)
ringneg.3  |-  X  =  ran  G
ringneg.4  |-  N  =  ( inv `  G
)
ringneg.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
rngonegmn1l  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  =  ( ( N `
 U ) H A ) )

Proof of Theorem rngonegmn1l
StepHypRef Expression
1 ringneg.3 . . . . . . . 8  |-  X  =  ran  G
2 ringneg.1 . . . . . . . . 9  |-  G  =  ( 1st `  R
)
32rneqi 5228 . . . . . . . 8  |-  ran  G  =  ran  ( 1st `  R
)
41, 3eqtri 2496 . . . . . . 7  |-  X  =  ran  ( 1st `  R
)
5 ringneg.2 . . . . . . 7  |-  H  =  ( 2nd `  R
)
6 ringneg.5 . . . . . . 7  |-  U  =  (GId `  H )
74, 5, 6rngo1cl 25123 . . . . . 6  |-  ( R  e.  RingOps  ->  U  e.  X
)
8 ringneg.4 . . . . . . . 8  |-  N  =  ( inv `  G
)
92, 1, 8rngonegcl 29967 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  U  e.  X )  ->  ( N `  U )  e.  X )
107, 9mpdan 668 . . . . . 6  |-  ( R  e.  RingOps  ->  ( N `  U )  e.  X
)
117, 10jca 532 . . . . 5  |-  ( R  e.  RingOps  ->  ( U  e.  X  /\  ( N `
 U )  e.  X ) )
1211adantr 465 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U  e.  X  /\  ( N `  U )  e.  X ) )
132, 5, 1rngodir 25080 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  ( U  e.  X  /\  ( N `  U )  e.  X  /\  A  e.  X ) )  -> 
( ( U G ( N `  U
) ) H A )  =  ( ( U H A ) G ( ( N `
 U ) H A ) ) )
14133exp2 1214 . . . . . 6  |-  ( R  e.  RingOps  ->  ( U  e.  X  ->  ( ( N `  U )  e.  X  ->  ( A  e.  X  ->  (
( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) ) ) ) )
1514imp42 594 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  ( U  e.  X  /\  ( N `  U
)  e.  X ) )  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) )
1615an32s 802 . . . 4  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  ( U  e.  X  /\  ( N `  U
)  e.  X ) )  ->  ( ( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) )
1712, 16mpdan 668 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  ( ( U H A ) G ( ( N `  U ) H A ) ) )
18 eqid 2467 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
192, 1, 8, 18rngoaddneg1 29968 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  U  e.  X )  ->  ( U G ( N `  U ) )  =  (GId `  G )
)
207, 19mpdan 668 . . . . . 6  |-  ( R  e.  RingOps  ->  ( U G ( N `  U
) )  =  (GId
`  G ) )
2120adantr 465 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U G ( N `  U ) )  =  (GId `  G )
)
2221oveq1d 6298 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  ( (GId `  G ) H A ) )
2318, 1, 2, 5rngolz 25095 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
(GId `  G ) H A )  =  (GId
`  G ) )
2422, 23eqtrd 2508 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U G ( N `  U ) ) H A )  =  (GId `  G
) )
255, 4, 6rngolidm 25118 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U H A )  =  A )
2625oveq1d 6298 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U H A ) G ( ( N `  U ) H A ) )  =  ( A G ( ( N `  U ) H A ) ) )
2717, 24, 263eqtr3rd 2517 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A G ( ( N `
 U ) H A ) )  =  (GId `  G )
)
2810adantr 465 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  U )  e.  X )
292, 5, 1rngocl 25076 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( N `  U )  e.  X  /\  A  e.  X )  ->  (
( N `  U
) H A )  e.  X )
30293expa 1196 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  ( N `  U )  e.  X )  /\  A  e.  X )  ->  ( ( N `  U ) H A )  e.  X )
3130an32s 802 . . . 4  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  ( N `  U
)  e.  X )  ->  ( ( N `
 U ) H A )  e.  X
)
3228, 31mpdan 668 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  U
) H A )  e.  X )
332rngogrpo 25084 . . . 4  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
341, 18, 8grpoinvid1 24924 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  (
( N `  U
) H A )  e.  X )  -> 
( ( N `  A )  =  ( ( N `  U
) H A )  <-> 
( A G ( ( N `  U
) H A ) )  =  (GId `  G ) ) )
3533, 34syl3an1 1261 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  (
( N `  U
) H A )  e.  X )  -> 
( ( N `  A )  =  ( ( N `  U
) H A )  <-> 
( A G ( ( N `  U
) H A ) )  =  (GId `  G ) ) )
3632, 35mpd3an3 1325 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( N `  A
)  =  ( ( N `  U ) H A )  <->  ( A G ( ( N `
 U ) H A ) )  =  (GId `  G )
) )
3727, 36mpbird 232 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( N `  A )  =  ( ( N `
 U ) H A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   ran crn 5000   ` cfv 5587  (class class class)co 6283   1stc1st 6782   2ndc2nd 6783   GrpOpcgr 24880  GIdcgi 24881   invcgn 24882   RingOpscrngo 25069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-1st 6784  df-2nd 6785  df-grpo 24885  df-gid 24886  df-ginv 24887  df-ablo 24976  df-ass 25007  df-exid 25009  df-mgm 25013  df-sgr 25025  df-mndo 25032  df-rngo 25070
This theorem is referenced by:  rngoneglmul  29973  idlnegcl  30038
  Copyright terms: Public domain W3C validator