MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngolidm Structured version   Unicode version

Theorem rngolidm 25099
Description: The unit of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uridm.1  |-  H  =  ( 2nd `  R
)
uridm.2  |-  X  =  ran  ( 1st `  R
)
uridm.3  |-  U  =  (GId `  H )
Assertion
Ref Expression
rngolidm  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U H A )  =  A )

Proof of Theorem rngolidm
StepHypRef Expression
1 uridm.1 . . 3  |-  H  =  ( 2nd `  R
)
2 uridm.2 . . 3  |-  X  =  ran  ( 1st `  R
)
3 uridm.3 . . 3  |-  U  =  (GId `  H )
41, 2, 3rngoidmlem 25098 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U H A )  =  A  /\  ( A H U )  =  A ) )
54simpld 459 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U H A )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   ran crn 5000   ` cfv 5586  (class class class)co 6282   1stc1st 6779   2ndc2nd 6780  GIdcgi 24862   RingOpscrngo 25050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fo 5592  df-fv 5594  df-riota 6243  df-ov 6285  df-1st 6781  df-2nd 6782  df-grpo 24866  df-gid 24867  df-ablo 24957  df-ass 24988  df-exid 24990  df-mgm 24994  df-sgr 25006  df-mndo 25013  df-rngo 25051
This theorem is referenced by:  zerdivemp1  25109  rngonegmn1l  29953  zerdivemp1x  29959  isdrngo2  29962  1idl  30024  smprngopr  30050  prnc  30065
  Copyright terms: Public domain W3C validator