MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngolidm Structured version   Unicode version

Theorem rngolidm 24064
Description: The unit of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uridm.1  |-  H  =  ( 2nd `  R
)
uridm.2  |-  X  =  ran  ( 1st `  R
)
uridm.3  |-  U  =  (GId `  H )
Assertion
Ref Expression
rngolidm  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U H A )  =  A )

Proof of Theorem rngolidm
StepHypRef Expression
1 uridm.1 . . 3  |-  H  =  ( 2nd `  R
)
2 uridm.2 . . 3  |-  X  =  ran  ( 1st `  R
)
3 uridm.3 . . 3  |-  U  =  (GId `  H )
41, 2, 3rngoidmlem 24063 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U H A )  =  A  /\  ( A H U )  =  A ) )
54simpld 459 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( U H A )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   ran crn 4950   ` cfv 5527  (class class class)co 6201   1stc1st 6686   2ndc2nd 6687  GIdcgi 23827   RingOpscrngo 24015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-fo 5533  df-fv 5535  df-riota 6162  df-ov 6204  df-1st 6688  df-2nd 6689  df-grpo 23831  df-gid 23832  df-ablo 23922  df-ass 23953  df-exid 23955  df-mgm 23959  df-sgr 23971  df-mndo 23978  df-rngo 24016
This theorem is referenced by:  zerdivemp1  24074  rngonegmn1l  28904  zerdivemp1x  28910  isdrngo2  28913  1idl  28975  smprngopr  29001  prnc  29016
  Copyright terms: Public domain W3C validator