Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoco Structured version   Unicode version

Theorem rngoisoco 30628
Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisoco  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngIso  T ) )

Proof of Theorem rngoisoco
StepHypRef Expression
1 rngoisohom 30626 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
213expa 1194 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
323adantl3 1152 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
4 rngoisohom 30626 . . . . . 6  |-  ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngIso  T ) )  ->  G  e.  ( S  RngHom  T ) )
543expa 1194 . . . . 5  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G  e.  ( S  RngHom  T ) )
653adantl1 1150 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G  e.  ( S  RngHom  T ) )
73, 6anim12da 30444 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )
8 rngohomco 30620 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngHom  T ) )
97, 8syldan 468 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngHom  T ) )
10 eqid 2454 . . . . . . 7  |-  ( 1st `  S )  =  ( 1st `  S )
11 eqid 2454 . . . . . . 7  |-  ran  ( 1st `  S )  =  ran  ( 1st `  S
)
12 eqid 2454 . . . . . . 7  |-  ( 1st `  T )  =  ( 1st `  T )
13 eqid 2454 . . . . . . 7  |-  ran  ( 1st `  T )  =  ran  ( 1st `  T
)
1410, 11, 12, 13rngoiso1o 30625 . . . . . 6  |-  ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngIso  T ) )  ->  G : ran  ( 1st `  S
)
-1-1-onto-> ran  ( 1st `  T
) )
15143expa 1194 . . . . 5  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G : ran  ( 1st `  S ) -1-1-onto-> ran  ( 1st `  T
) )
16153adantl1 1150 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G : ran  ( 1st `  S
)
-1-1-onto-> ran  ( 1st `  T
) )
1716adantrl 713 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  G : ran  ( 1st `  S
)
-1-1-onto-> ran  ( 1st `  T
) )
18 eqid 2454 . . . . . . 7  |-  ( 1st `  R )  =  ( 1st `  R )
19 eqid 2454 . . . . . . 7  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
2018, 19, 10, 11rngoiso1o 30625 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngIso  S ) )  ->  F : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  S
) )
21203expa 1194 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  S
) )
22213adantl3 1152 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  S
) )
2322adantrr 714 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  F : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  S
) )
24 f1oco 5820 . . 3  |-  ( ( G : ran  ( 1st `  S ) -1-1-onto-> ran  ( 1st `  T )  /\  F : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  S
) )  ->  ( G  o.  F ) : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  T
) )
2517, 23, 24syl2anc 659 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F ) : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  T
) )
2618, 19, 12, 13isrngoiso 30624 . . . 4  |-  ( ( R  e.  RingOps  /\  T  e.  RingOps )  ->  (
( G  o.  F
)  e.  ( R 
RngIso  T )  <->  ( ( G  o.  F )  e.  ( R  RngHom  T )  /\  ( G  o.  F ) : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  T
) ) ) )
27263adant2 1013 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  ->  ( ( G  o.  F )  e.  ( R  RngIso  T )  <-> 
( ( G  o.  F )  e.  ( R  RngHom  T )  /\  ( G  o.  F
) : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  T ) ) ) )
2827adantr 463 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  (
( G  o.  F
)  e.  ( R 
RngIso  T )  <->  ( ( G  o.  F )  e.  ( R  RngHom  T )  /\  ( G  o.  F ) : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  T
) ) ) )
299, 25, 28mpbir2and 920 1  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngIso  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    e. wcel 1823   ran crn 4989    o. ccom 4992   -1-1-onto->wf1o 5569   ` cfv 5570  (class class class)co 6270   1stc1st 6771   RingOpscrngo 25578    RngHom crnghom 30606    RngIso crngiso 30607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-map 7414  df-grpo 25394  df-gid 25395  df-ablo 25485  df-ass 25516  df-exid 25518  df-mgmOLD 25522  df-sgrOLD 25534  df-mndo 25541  df-rngo 25579  df-rngohom 30609  df-rngoiso 30622
This theorem is referenced by:  riscer  30634
  Copyright terms: Public domain W3C validator