MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngoidmlem Structured version   Unicode version

Theorem rngoidmlem 24047
Description: The unit of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uridm.1  |-  H  =  ( 2nd `  R
)
uridm.2  |-  X  =  ran  ( 1st `  R
)
uridm.3  |-  U  =  (GId `  H )
Assertion
Ref Expression
rngoidmlem  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U H A )  =  A  /\  ( A H U )  =  A ) )

Proof of Theorem rngoidmlem
StepHypRef Expression
1 uridm.1 . . . . 5  |-  H  =  ( 2nd `  R
)
21rngomndo 24045 . . . 4  |-  ( R  e.  RingOps  ->  H  e. MndOp )
3 mndomgmid 23966 . . . 4  |-  ( H  e. MndOp  ->  H  e.  (
Magma  i^i  ExId  ) )
4 eqid 2451 . . . . . 6  |-  ran  H  =  ran  H
5 uridm.3 . . . . . 6  |-  U  =  (GId `  H )
64, 5cmpidelt 23953 . . . . 5  |-  ( ( H  e.  ( Magma  i^i 
ExId  )  /\  A  e. 
ran  H )  -> 
( ( U H A )  =  A  /\  ( A H U )  =  A ) )
76ex 434 . . . 4  |-  ( H  e.  ( Magma  i^i  ExId  )  ->  ( A  e. 
ran  H  ->  ( ( U H A )  =  A  /\  ( A H U )  =  A ) ) )
82, 3, 73syl 20 . . 3  |-  ( R  e.  RingOps  ->  ( A  e. 
ran  H  ->  ( ( U H A )  =  A  /\  ( A H U )  =  A ) ) )
9 eqid 2451 . . . . 5  |-  ( 1st `  R )  =  ( 1st `  R )
101, 9rngorn1eq 24044 . . . 4  |-  ( R  e.  RingOps  ->  ran  ( 1st `  R )  =  ran  H )
11 uridm.2 . . . . 5  |-  X  =  ran  ( 1st `  R
)
12 eqtr 2477 . . . . . 6  |-  ( ( X  =  ran  ( 1st `  R )  /\  ran  ( 1st `  R
)  =  ran  H
)  ->  X  =  ran  H )
13 simpl 457 . . . . . . . . 9  |-  ( ( X  =  ran  H  /\  R  e.  RingOps )  ->  X  =  ran  H )
1413eleq2d 2521 . . . . . . . 8  |-  ( ( X  =  ran  H  /\  R  e.  RingOps )  -> 
( A  e.  X  <->  A  e.  ran  H ) )
1514imbi1d 317 . . . . . . 7  |-  ( ( X  =  ran  H  /\  R  e.  RingOps )  -> 
( ( A  e.  X  ->  ( ( U H A )  =  A  /\  ( A H U )  =  A ) )  <->  ( A  e.  ran  H  ->  (
( U H A )  =  A  /\  ( A H U )  =  A ) ) ) )
1615ex 434 . . . . . 6  |-  ( X  =  ran  H  -> 
( R  e.  RingOps  -> 
( ( A  e.  X  ->  ( ( U H A )  =  A  /\  ( A H U )  =  A ) )  <->  ( A  e.  ran  H  ->  (
( U H A )  =  A  /\  ( A H U )  =  A ) ) ) ) )
1712, 16syl 16 . . . . 5  |-  ( ( X  =  ran  ( 1st `  R )  /\  ran  ( 1st `  R
)  =  ran  H
)  ->  ( R  e.  RingOps  ->  ( ( A  e.  X  ->  (
( U H A )  =  A  /\  ( A H U )  =  A ) )  <-> 
( A  e.  ran  H  ->  ( ( U H A )  =  A  /\  ( A H U )  =  A ) ) ) ) )
1811, 17mpan 670 . . . 4  |-  ( ran  ( 1st `  R
)  =  ran  H  ->  ( R  e.  RingOps  -> 
( ( A  e.  X  ->  ( ( U H A )  =  A  /\  ( A H U )  =  A ) )  <->  ( A  e.  ran  H  ->  (
( U H A )  =  A  /\  ( A H U )  =  A ) ) ) ) )
1910, 18mpcom 36 . . 3  |-  ( R  e.  RingOps  ->  ( ( A  e.  X  ->  (
( U H A )  =  A  /\  ( A H U )  =  A ) )  <-> 
( A  e.  ran  H  ->  ( ( U H A )  =  A  /\  ( A H U )  =  A ) ) ) )
208, 19mpbird 232 . 2  |-  ( R  e.  RingOps  ->  ( A  e.  X  ->  ( ( U H A )  =  A  /\  ( A H U )  =  A ) ) )
2120imp 429 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( U H A )  =  A  /\  ( A H U )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    i^i cin 3427   ran crn 4941   ` cfv 5518  (class class class)co 6192   1stc1st 6677   2ndc2nd 6678  GIdcgi 23811    ExId cexid 23938   Magmacmagm 23942  MndOpcmndo 23961   RingOpscrngo 23999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-fo 5524  df-fv 5526  df-riota 6153  df-ov 6195  df-1st 6679  df-2nd 6680  df-grpo 23815  df-gid 23816  df-ablo 23906  df-ass 23937  df-exid 23939  df-mgm 23943  df-sgr 23955  df-mndo 23962  df-rngo 24000
This theorem is referenced by:  rngolidm  24048  rngoridm  24049
  Copyright terms: Public domain W3C validator