MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngoi Structured version   Unicode version

Theorem rngoi 25360
Description: The properties of a unital ring. (Contributed by Steve Rodriguez, 8-Sep-2007.) (Proof shortened by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1  |-  G  =  ( 1st `  R
)
ringi.2  |-  H  =  ( 2nd `  R
)
ringi.3  |-  X  =  ran  G
Assertion
Ref Expression
rngoi  |-  ( R  e.  RingOps  ->  ( ( G  e.  AbelOp  /\  H :
( X  X.  X
) --> X )  /\  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  X  A. y  e.  X  ( (
x H y )  =  y  /\  (
y H x )  =  y ) ) ) )
Distinct variable groups:    x, y,
z, G    x, H, y, z    x, X, y, z    x, R
Allowed substitution hints:    R( y, z)

Proof of Theorem rngoi
StepHypRef Expression
1 relrngo 25357 . . . . 5  |-  Rel  RingOps
2 1st2nd 6831 . . . . 5  |-  ( ( Rel  RingOps  /\  R  e.  RingOps )  ->  R  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >. )
31, 2mpan 670 . . . 4  |-  ( R  e.  RingOps  ->  R  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >. )
4 ringi.1 . . . . 5  |-  G  =  ( 1st `  R
)
5 ringi.2 . . . . 5  |-  H  =  ( 2nd `  R
)
64, 5opeq12i 4207 . . . 4  |-  <. G ,  H >.  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >.
73, 6syl6reqr 2503 . . 3  |-  ( R  e.  RingOps  ->  <. G ,  H >.  =  R )
8 id 22 . . 3  |-  ( R  e.  RingOps  ->  R  e.  RingOps )
97, 8eqeltrd 2531 . 2  |-  ( R  e.  RingOps  ->  <. G ,  H >.  e.  RingOps )
10 fvex 5866 . . . 4  |-  ( 2nd `  R )  e.  _V
115, 10eqeltri 2527 . . 3  |-  H  e. 
_V
12 ringi.3 . . . 4  |-  X  =  ran  G
1312isrngo 25358 . . 3  |-  ( H  e.  _V  ->  ( <. G ,  H >.  e.  RingOps  <->  ( ( G  e.  AbelOp  /\  H : ( X  X.  X ) --> X )  /\  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) ) )
1411, 13ax-mp 5 . 2  |-  ( <. G ,  H >.  e.  RingOps  <->  ( ( G  e.  AbelOp  /\  H : ( X  X.  X ) --> X )  /\  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) )
159, 14sylib 196 1  |-  ( R  e.  RingOps  ->  ( ( G  e.  AbelOp  /\  H :
( X  X.  X
) --> X )  /\  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  X  A. y  e.  X  ( (
x H y )  =  y  /\  (
y H x )  =  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794   _Vcvv 3095   <.cop 4020    X. cxp 4987   ran crn 4990   Rel wrel 4994   -->wf 5574   ` cfv 5578  (class class class)co 6281   1stc1st 6783   2ndc2nd 6784   AbelOpcablo 25261   RingOpscrngo 25355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-fv 5586  df-ov 6284  df-1st 6785  df-2nd 6786  df-rngo 25356
This theorem is referenced by:  rngosm  25361  rngoid  25363  rngoideu  25364  rngodi  25365  rngodir  25366  rngoass  25367  rngoablo  25369  rngorn1eq  25400  rngomndo  25401
  Copyright terms: Public domain W3C validator