Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomco Structured version   Unicode version

Theorem rngohomco 30579
Description: The composition of two ring homomorphisms is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngohomco  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngHom  T ) )

Proof of Theorem rngohomco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2392 . . . . . . 7  |-  ( 1st `  S )  =  ( 1st `  S )
2 eqid 2392 . . . . . . 7  |-  ran  ( 1st `  S )  =  ran  ( 1st `  S
)
3 eqid 2392 . . . . . . 7  |-  ( 1st `  T )  =  ( 1st `  T )
4 eqid 2392 . . . . . . 7  |-  ran  ( 1st `  T )  =  ran  ( 1st `  T
)
51, 2, 3, 4rngohomf 30571 . . . . . 6  |-  ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngHom  T ) )  ->  G : ran  ( 1st `  S
) --> ran  ( 1st `  T ) )
653expa 1194 . . . . 5  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngHom  T ) )  ->  G : ran  ( 1st `  S ) --> ran  ( 1st `  T ) )
763adantl1 1150 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngHom  T ) )  ->  G : ran  ( 1st `  S
) --> ran  ( 1st `  T ) )
87adantrl 713 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  G : ran  ( 1st `  S
) --> ran  ( 1st `  T ) )
9 eqid 2392 . . . . . . 7  |-  ( 1st `  R )  =  ( 1st `  R )
10 eqid 2392 . . . . . . 7  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
119, 10, 1, 2rngohomf 30571 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  F : ran  ( 1st `  R
) --> ran  ( 1st `  S ) )
12113expa 1194 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  ->  F : ran  ( 1st `  R ) --> ran  ( 1st `  S ) )
13123adantl3 1152 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  ->  F : ran  ( 1st `  R
) --> ran  ( 1st `  S ) )
1413adantrr 714 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  F : ran  ( 1st `  R
) --> ran  ( 1st `  S ) )
15 fco 5662 . . 3  |-  ( ( G : ran  ( 1st `  S ) --> ran  ( 1st `  T
)  /\  F : ran  ( 1st `  R
) --> ran  ( 1st `  S ) )  -> 
( G  o.  F
) : ran  ( 1st `  R ) --> ran  ( 1st `  T
) )
168, 14, 15syl2anc 659 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  ( G  o.  F ) : ran  ( 1st `  R
) --> ran  ( 1st `  T ) )
17 eqid 2392 . . . . . . 7  |-  ( 2nd `  R )  =  ( 2nd `  R )
18 eqid 2392 . . . . . . 7  |-  (GId `  ( 2nd `  R ) )  =  (GId `  ( 2nd `  R ) )
1910, 17, 18rngo1cl 25569 . . . . . 6  |-  ( R  e.  RingOps  ->  (GId `  ( 2nd `  R ) )  e.  ran  ( 1st `  R ) )
20193ad2ant1 1015 . . . . 5  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  ->  (GId `  ( 2nd `  R ) )  e.  ran  ( 1st `  R ) )
2120adantr 463 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  (GId `  ( 2nd `  R
) )  e.  ran  ( 1st `  R ) )
22 fvco3 5864 . . . 4  |-  ( ( F : ran  ( 1st `  R ) --> ran  ( 1st `  S
)  /\  (GId `  ( 2nd `  R ) )  e.  ran  ( 1st `  R ) )  -> 
( ( G  o.  F ) `  (GId `  ( 2nd `  R
) ) )  =  ( G `  ( F `  (GId `  ( 2nd `  R ) ) ) ) )
2314, 21, 22syl2anc 659 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  (
( G  o.  F
) `  (GId `  ( 2nd `  R ) ) )  =  ( G `
 ( F `  (GId `  ( 2nd `  R
) ) ) ) )
24 eqid 2392 . . . . . . . . 9  |-  ( 2nd `  S )  =  ( 2nd `  S )
25 eqid 2392 . . . . . . . . 9  |-  (GId `  ( 2nd `  S ) )  =  (GId `  ( 2nd `  S ) )
2617, 18, 24, 25rngohom1 30573 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( F `  (GId `  ( 2nd `  R ) ) )  =  (GId `  ( 2nd `  S ) ) )
27263expa 1194 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  -> 
( F `  (GId `  ( 2nd `  R
) ) )  =  (GId `  ( 2nd `  S ) ) )
28273adantl3 1152 . . . . . 6  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  ->  ( F `  (GId `  ( 2nd `  R ) ) )  =  (GId `  ( 2nd `  S ) ) )
2928adantrr 714 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  ( F `  (GId `  ( 2nd `  R ) ) )  =  (GId `  ( 2nd `  S ) ) )
3029fveq2d 5791 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  ( G `  ( F `  (GId `  ( 2nd `  R ) ) ) )  =  ( G `
 (GId `  ( 2nd `  S ) ) ) )
31 eqid 2392 . . . . . . . 8  |-  ( 2nd `  T )  =  ( 2nd `  T )
32 eqid 2392 . . . . . . . 8  |-  (GId `  ( 2nd `  T ) )  =  (GId `  ( 2nd `  T ) )
3324, 25, 31, 32rngohom1 30573 . . . . . . 7  |-  ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngHom  T ) )  ->  ( G `  (GId `  ( 2nd `  S ) ) )  =  (GId `  ( 2nd `  T ) ) )
34333expa 1194 . . . . . 6  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngHom  T ) )  -> 
( G `  (GId `  ( 2nd `  S
) ) )  =  (GId `  ( 2nd `  T ) ) )
35343adantl1 1150 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngHom  T ) )  ->  ( G `  (GId `  ( 2nd `  S ) ) )  =  (GId `  ( 2nd `  T ) ) )
3635adantrl 713 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  ( G `  (GId `  ( 2nd `  S ) ) )  =  (GId `  ( 2nd `  T ) ) )
3730, 36eqtrd 2433 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  ( G `  ( F `  (GId `  ( 2nd `  R ) ) ) )  =  (GId `  ( 2nd `  T ) ) )
3823, 37eqtrd 2433 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  (
( G  o.  F
) `  (GId `  ( 2nd `  R ) ) )  =  (GId `  ( 2nd `  T ) ) )
399, 10, 1rngohomadd 30574 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( F `  (
x ( 1st `  R
) y ) )  =  ( ( F `
 x ) ( 1st `  S ) ( F `  y
) ) )
4039ex 432 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  -> 
( F `  (
x ( 1st `  R
) y ) )  =  ( ( F `
 x ) ( 1st `  S ) ( F `  y
) ) ) )
41403expa 1194 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  -> 
( ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) )  ->  ( F `  ( x
( 1st `  R
) y ) )  =  ( ( F `
 x ) ( 1st `  S ) ( F `  y
) ) ) )
42413adantl3 1152 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  -> 
( F `  (
x ( 1st `  R
) y ) )  =  ( ( F `
 x ) ( 1st `  S ) ( F `  y
) ) ) )
4342imp 427 . . . . . . . 8  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  ->  ( F `  ( x
( 1st `  R
) y ) )  =  ( ( F `
 x ) ( 1st `  S ) ( F `  y
) ) )
4443adantlrr 718 . . . . . . 7  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( F `  (
x ( 1st `  R
) y ) )  =  ( ( F `
 x ) ( 1st `  S ) ( F `  y
) ) )
4544fveq2d 5791 . . . . . 6  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( G `  ( F `  ( x
( 1st `  R
) y ) ) )  =  ( G `
 ( ( F `
 x ) ( 1st `  S ) ( F `  y
) ) ) )
469, 10, 1, 2rngohomcl 30572 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  x  e. 
ran  ( 1st `  R
) )  ->  ( F `  x )  e.  ran  ( 1st `  S
) )
479, 10, 1, 2rngohomcl 30572 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  y  e. 
ran  ( 1st `  R
) )  ->  ( F `  y )  e.  ran  ( 1st `  S
) )
4846, 47anim12da 30403 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( F `  x )  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) ) )
4948ex 432 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  -> 
( ( F `  x )  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) ) ) )
50493expa 1194 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  -> 
( ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) )  ->  (
( F `  x
)  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) ) ) )
51503adantl3 1152 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  -> 
( ( F `  x )  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) ) ) )
5251imp 427 . . . . . . . 8  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  ->  (
( F `  x
)  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) ) )
5352adantlrr 718 . . . . . . 7  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( F `  x )  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) ) )
541, 2, 3rngohomadd 30574 . . . . . . . . . . . 12  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngHom  T ) )  /\  ( ( F `  x )  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S
) ) )  -> 
( G `  (
( F `  x
) ( 1st `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 1st `  T ) ( G `  ( F `  y )
) ) )
5554ex 432 . . . . . . . . . . 11  |-  ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngHom  T ) )  ->  ( (
( F `  x
)  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) )  -> 
( G `  (
( F `  x
) ( 1st `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 1st `  T ) ( G `  ( F `  y )
) ) ) )
56553expa 1194 . . . . . . . . . 10  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngHom  T ) )  -> 
( ( ( F `
 x )  e. 
ran  ( 1st `  S
)  /\  ( F `  y )  e.  ran  ( 1st `  S ) )  ->  ( G `  ( ( F `  x ) ( 1st `  S ) ( F `
 y ) ) )  =  ( ( G `  ( F `
 x ) ) ( 1st `  T
) ( G `  ( F `  y ) ) ) ) )
57563adantl1 1150 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngHom  T ) )  ->  ( (
( F `  x
)  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) )  -> 
( G `  (
( F `  x
) ( 1st `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 1st `  T ) ( G `  ( F `  y )
) ) ) )
5857imp 427 . . . . . . . 8  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngHom  T ) )  /\  ( ( F `  x )  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) ) )  ->  ( G `  ( ( F `  x )
( 1st `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 1st `  T ) ( G `  ( F `  y )
) ) )
5958adantlrl 717 . . . . . . 7  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( ( F `
 x )  e. 
ran  ( 1st `  S
)  /\  ( F `  y )  e.  ran  ( 1st `  S ) ) )  ->  ( G `  ( ( F `  x )
( 1st `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 1st `  T ) ( G `  ( F `  y )
) ) )
6053, 59syldan 468 . . . . . 6  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( G `  (
( F `  x
) ( 1st `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 1st `  T ) ( G `  ( F `  y )
) ) )
6145, 60eqtrd 2433 . . . . 5  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( G `  ( F `  ( x
( 1st `  R
) y ) ) )  =  ( ( G `  ( F `
 x ) ) ( 1st `  T
) ( G `  ( F `  y ) ) ) )
629, 10rngogcl 25531 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  x  e.  ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) )  ->  (
x ( 1st `  R
) y )  e. 
ran  ( 1st `  R
) )
63623expb 1195 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  ->  ( x ( 1st `  R ) y )  e.  ran  ( 1st `  R ) )
64633ad2antl1 1156 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  ->  ( x ( 1st `  R ) y )  e.  ran  ( 1st `  R ) )
6564adantlr 712 . . . . . 6  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( x ( 1st `  R ) y )  e.  ran  ( 1st `  R ) )
66 fvco3 5864 . . . . . . 7  |-  ( ( F : ran  ( 1st `  R ) --> ran  ( 1st `  S
)  /\  ( x
( 1st `  R
) y )  e. 
ran  ( 1st `  R
) )  ->  (
( G  o.  F
) `  ( x
( 1st `  R
) y ) )  =  ( G `  ( F `  ( x ( 1st `  R
) y ) ) ) )
6714, 66sylan 469 . . . . . 6  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x ( 1st `  R ) y )  e.  ran  ( 1st `  R ) )  ->  ( ( G  o.  F ) `  ( x ( 1st `  R ) y ) )  =  ( G `
 ( F `  ( x ( 1st `  R ) y ) ) ) )
6865, 67syldan 468 . . . . 5  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( G  o.  F ) `  (
x ( 1st `  R
) y ) )  =  ( G `  ( F `  ( x ( 1st `  R
) y ) ) ) )
69 fvco3 5864 . . . . . . . 8  |-  ( ( F : ran  ( 1st `  R ) --> ran  ( 1st `  S
)  /\  x  e.  ran  ( 1st `  R
) )  ->  (
( G  o.  F
) `  x )  =  ( G `  ( F `  x ) ) )
7014, 69sylan 469 . . . . . . 7  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  x  e.  ran  ( 1st `  R ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
71 fvco3 5864 . . . . . . . 8  |-  ( ( F : ran  ( 1st `  R ) --> ran  ( 1st `  S
)  /\  y  e.  ran  ( 1st `  R
) )  ->  (
( G  o.  F
) `  y )  =  ( G `  ( F `  y ) ) )
7214, 71sylan 469 . . . . . . 7  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  y  e.  ran  ( 1st `  R ) )  ->  ( ( G  o.  F ) `  y )  =  ( G `  ( F `
 y ) ) )
7370, 72anim12da 30403 . . . . . 6  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) )  /\  ( ( G  o.  F ) `  y )  =  ( G `  ( F `
 y ) ) ) )
74 oveq12 6223 . . . . . 6  |-  ( ( ( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) )  /\  ( ( G  o.  F ) `  y
)  =  ( G `
 ( F `  y ) ) )  ->  ( ( ( G  o.  F ) `
 x ) ( 1st `  T ) ( ( G  o.  F ) `  y
) )  =  ( ( G `  ( F `  x )
) ( 1st `  T
) ( G `  ( F `  y ) ) ) )
7573, 74syl 16 . . . . 5  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( ( G  o.  F ) `  x ) ( 1st `  T ) ( ( G  o.  F ) `
 y ) )  =  ( ( G `
 ( F `  x ) ) ( 1st `  T ) ( G `  ( F `  y )
) ) )
7661, 68, 753eqtr4d 2443 . . . 4  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( G  o.  F ) `  (
x ( 1st `  R
) y ) )  =  ( ( ( G  o.  F ) `
 x ) ( 1st `  T ) ( ( G  o.  F ) `  y
) ) )
779, 10, 17, 24rngohommul 30575 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( F `  (
x ( 2nd `  R
) y ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  y
) ) )
7877ex 432 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  -> 
( F `  (
x ( 2nd `  R
) y ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  y
) ) ) )
79783expa 1194 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  -> 
( ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) )  ->  ( F `  ( x
( 2nd `  R
) y ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  y
) ) ) )
80793adantl3 1152 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) )  -> 
( F `  (
x ( 2nd `  R
) y ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  y
) ) ) )
8180imp 427 . . . . . . . 8  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  ->  ( F `  ( x
( 2nd `  R
) y ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  y
) ) )
8281adantlrr 718 . . . . . . 7  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( F `  (
x ( 2nd `  R
) y ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  y
) ) )
8382fveq2d 5791 . . . . . 6  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( G `  ( F `  ( x
( 2nd `  R
) y ) ) )  =  ( G `
 ( ( F `
 x ) ( 2nd `  S ) ( F `  y
) ) ) )
841, 2, 24, 31rngohommul 30575 . . . . . . . . . . . 12  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngHom  T ) )  /\  ( ( F `  x )  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S
) ) )  -> 
( G `  (
( F `  x
) ( 2nd `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 2nd `  T ) ( G `  ( F `  y )
) ) )
8584ex 432 . . . . . . . . . . 11  |-  ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngHom  T ) )  ->  ( (
( F `  x
)  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) )  -> 
( G `  (
( F `  x
) ( 2nd `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 2nd `  T ) ( G `  ( F `  y )
) ) ) )
86853expa 1194 . . . . . . . . . 10  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngHom  T ) )  -> 
( ( ( F `
 x )  e. 
ran  ( 1st `  S
)  /\  ( F `  y )  e.  ran  ( 1st `  S ) )  ->  ( G `  ( ( F `  x ) ( 2nd `  S ) ( F `
 y ) ) )  =  ( ( G `  ( F `
 x ) ) ( 2nd `  T
) ( G `  ( F `  y ) ) ) ) )
87863adantl1 1150 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngHom  T ) )  ->  ( (
( F `  x
)  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) )  -> 
( G `  (
( F `  x
) ( 2nd `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 2nd `  T ) ( G `  ( F `  y )
) ) ) )
8887imp 427 . . . . . . . 8  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngHom  T ) )  /\  ( ( F `  x )  e.  ran  ( 1st `  S )  /\  ( F `  y )  e.  ran  ( 1st `  S ) ) )  ->  ( G `  ( ( F `  x )
( 2nd `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 2nd `  T ) ( G `  ( F `  y )
) ) )
8988adantlrl 717 . . . . . . 7  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( ( F `
 x )  e. 
ran  ( 1st `  S
)  /\  ( F `  y )  e.  ran  ( 1st `  S ) ) )  ->  ( G `  ( ( F `  x )
( 2nd `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 2nd `  T ) ( G `  ( F `  y )
) ) )
9053, 89syldan 468 . . . . . 6  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( G `  (
( F `  x
) ( 2nd `  S
) ( F `  y ) ) )  =  ( ( G `
 ( F `  x ) ) ( 2nd `  T ) ( G `  ( F `  y )
) ) )
9183, 90eqtrd 2433 . . . . 5  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( G `  ( F `  ( x
( 2nd `  R
) y ) ) )  =  ( ( G `  ( F `
 x ) ) ( 2nd `  T
) ( G `  ( F `  y ) ) ) )
929, 17, 10rngocl 25522 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  x  e.  ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) )  ->  (
x ( 2nd `  R
) y )  e. 
ran  ( 1st `  R
) )
93923expb 1195 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  ->  ( x ( 2nd `  R ) y )  e.  ran  ( 1st `  R ) )
94933ad2antl1 1156 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R ) ) )  ->  ( x ( 2nd `  R ) y )  e.  ran  ( 1st `  R ) )
9594adantlr 712 . . . . . 6  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( x ( 2nd `  R ) y )  e.  ran  ( 1st `  R ) )
96 fvco3 5864 . . . . . . 7  |-  ( ( F : ran  ( 1st `  R ) --> ran  ( 1st `  S
)  /\  ( x
( 2nd `  R
) y )  e. 
ran  ( 1st `  R
) )  ->  (
( G  o.  F
) `  ( x
( 2nd `  R
) y ) )  =  ( G `  ( F `  ( x ( 2nd `  R
) y ) ) ) )
9714, 96sylan 469 . . . . . 6  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x ( 2nd `  R ) y )  e.  ran  ( 1st `  R ) )  ->  ( ( G  o.  F ) `  ( x ( 2nd `  R ) y ) )  =  ( G `
 ( F `  ( x ( 2nd `  R ) y ) ) ) )
9895, 97syldan 468 . . . . 5  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( G  o.  F ) `  (
x ( 2nd `  R
) y ) )  =  ( G `  ( F `  ( x ( 2nd `  R
) y ) ) ) )
99 oveq12 6223 . . . . . 6  |-  ( ( ( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) )  /\  ( ( G  o.  F ) `  y
)  =  ( G `
 ( F `  y ) ) )  ->  ( ( ( G  o.  F ) `
 x ) ( 2nd `  T ) ( ( G  o.  F ) `  y
) )  =  ( ( G `  ( F `  x )
) ( 2nd `  T
) ( G `  ( F `  y ) ) ) )
10073, 99syl 16 . . . . 5  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( ( G  o.  F ) `  x ) ( 2nd `  T ) ( ( G  o.  F ) `
 y ) )  =  ( ( G `
 ( F `  x ) ) ( 2nd `  T ) ( G `  ( F `  y )
) ) )
10191, 98, 1003eqtr4d 2443 . . . 4  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( G  o.  F ) `  (
x ( 2nd `  R
) y ) )  =  ( ( ( G  o.  F ) `
 x ) ( 2nd `  T ) ( ( G  o.  F ) `  y
) ) )
10276, 101jca 530 . . 3  |-  ( ( ( ( R  e.  RingOps 
/\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  /\  ( x  e. 
ran  ( 1st `  R
)  /\  y  e.  ran  ( 1st `  R
) ) )  -> 
( ( ( G  o.  F ) `  ( x ( 1st `  R ) y ) )  =  ( ( ( G  o.  F
) `  x )
( 1st `  T
) ( ( G  o.  F ) `  y ) )  /\  ( ( G  o.  F ) `  (
x ( 2nd `  R
) y ) )  =  ( ( ( G  o.  F ) `
 x ) ( 2nd `  T ) ( ( G  o.  F ) `  y
) ) ) )
103102ralrimivva 2813 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  A. x  e.  ran  ( 1st `  R
) A. y  e. 
ran  ( 1st `  R
) ( ( ( G  o.  F ) `
 ( x ( 1st `  R ) y ) )  =  ( ( ( G  o.  F ) `  x ) ( 1st `  T ) ( ( G  o.  F ) `
 y ) )  /\  ( ( G  o.  F ) `  ( x ( 2nd `  R ) y ) )  =  ( ( ( G  o.  F
) `  x )
( 2nd `  T
) ( ( G  o.  F ) `  y ) ) ) )
1049, 17, 10, 18, 3, 31, 4, 32isrngohom 30570 . . . 4  |-  ( ( R  e.  RingOps  /\  T  e.  RingOps )  ->  (
( G  o.  F
)  e.  ( R 
RngHom  T )  <->  ( ( G  o.  F ) : ran  ( 1st `  R
) --> ran  ( 1st `  T )  /\  (
( G  o.  F
) `  (GId `  ( 2nd `  R ) ) )  =  (GId `  ( 2nd `  T ) )  /\  A. x  e.  ran  ( 1st `  R
) A. y  e. 
ran  ( 1st `  R
) ( ( ( G  o.  F ) `
 ( x ( 1st `  R ) y ) )  =  ( ( ( G  o.  F ) `  x ) ( 1st `  T ) ( ( G  o.  F ) `
 y ) )  /\  ( ( G  o.  F ) `  ( x ( 2nd `  R ) y ) )  =  ( ( ( G  o.  F
) `  x )
( 2nd `  T
) ( ( G  o.  F ) `  y ) ) ) ) ) )
1051043adant2 1013 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  ->  ( ( G  o.  F )  e.  ( R  RngHom  T )  <-> 
( ( G  o.  F ) : ran  ( 1st `  R ) --> ran  ( 1st `  T
)  /\  ( ( G  o.  F ) `  (GId `  ( 2nd `  R ) ) )  =  (GId `  ( 2nd `  T ) )  /\  A. x  e. 
ran  ( 1st `  R
) A. y  e. 
ran  ( 1st `  R
) ( ( ( G  o.  F ) `
 ( x ( 1st `  R ) y ) )  =  ( ( ( G  o.  F ) `  x ) ( 1st `  T ) ( ( G  o.  F ) `
 y ) )  /\  ( ( G  o.  F ) `  ( x ( 2nd `  R ) y ) )  =  ( ( ( G  o.  F
) `  x )
( 2nd `  T
) ( ( G  o.  F ) `  y ) ) ) ) ) )
106105adantr 463 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  (
( G  o.  F
)  e.  ( R 
RngHom  T )  <->  ( ( G  o.  F ) : ran  ( 1st `  R
) --> ran  ( 1st `  T )  /\  (
( G  o.  F
) `  (GId `  ( 2nd `  R ) ) )  =  (GId `  ( 2nd `  T ) )  /\  A. x  e.  ran  ( 1st `  R
) A. y  e. 
ran  ( 1st `  R
) ( ( ( G  o.  F ) `
 ( x ( 1st `  R ) y ) )  =  ( ( ( G  o.  F ) `  x ) ( 1st `  T ) ( ( G  o.  F ) `
 y ) )  /\  ( ( G  o.  F ) `  ( x ( 2nd `  R ) y ) )  =  ( ( ( G  o.  F
) `  x )
( 2nd `  T
) ( ( G  o.  F ) `  y ) ) ) ) ) )
10716, 38, 103, 106mpbir3and 1177 1  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngHom  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836   A.wral 2742   ran crn 4927    o. ccom 4930   -->wf 5505   ` cfv 5509  (class class class)co 6214   1stc1st 6715   2ndc2nd 6716  GIdcgi 25327   RingOpscrngo 25515    RngHom crnghom 30565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-ral 2747  df-rex 2748  df-reu 2749  df-rmo 2750  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-fo 5515  df-fv 5517  df-riota 6176  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-1st 6717  df-2nd 6718  df-map 7358  df-grpo 25331  df-gid 25332  df-ablo 25422  df-ass 25453  df-exid 25455  df-mgmOLD 25459  df-sgrOLD 25471  df-mndo 25478  df-rngo 25516  df-rngohom 30568
This theorem is referenced by:  rngoisoco  30587
  Copyright terms: Public domain W3C validator