MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngodm1dm2 Structured version   Unicode version

Theorem rngodm1dm2 24084
Description: In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnplrnml0.1  |-  H  =  ( 2nd `  R
)
rnplrnml0.2  |-  G  =  ( 1st `  R
)
Assertion
Ref Expression
rngodm1dm2  |-  ( R  e.  RingOps  ->  dom  dom  G  =  dom  dom  H )

Proof of Theorem rngodm1dm2
StepHypRef Expression
1 rnplrnml0.2 . . . 4  |-  G  =  ( 1st `  R
)
21rngogrpo 24056 . . 3  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
3 eqid 2454 . . . 4  |-  ran  G  =  ran  G
43grpofo 23865 . . 3  |-  ( G  e.  GrpOp  ->  G :
( ran  G  X.  ran  G ) -onto-> ran  G
)
52, 4syl 16 . 2  |-  ( R  e.  RingOps  ->  G : ( ran  G  X.  ran  G ) -onto-> ran  G )
6 rnplrnml0.1 . . 3  |-  H  =  ( 2nd `  R
)
71, 6, 3rngosm 24047 . 2  |-  ( R  e.  RingOps  ->  H : ( ran  G  X.  ran  G ) --> ran  G )
8 fof 5731 . . . 4  |-  ( G : ( ran  G  X.  ran  G ) -onto-> ran 
G  ->  G :
( ran  G  X.  ran  G ) --> ran  G
)
9 fdm 5674 . . . 4  |-  ( G : ( ran  G  X.  ran  G ) --> ran 
G  ->  dom  G  =  ( ran  G  X.  ran  G ) )
108, 9syl 16 . . 3  |-  ( G : ( ran  G  X.  ran  G ) -onto-> ran 
G  ->  dom  G  =  ( ran  G  X.  ran  G ) )
11 fdm 5674 . . . 4  |-  ( H : ( ran  G  X.  ran  G ) --> ran 
G  ->  dom  H  =  ( ran  G  X.  ran  G ) )
12 eqtr 2480 . . . . . . 7  |-  ( ( dom  G  =  ( ran  G  X.  ran  G )  /\  ( ran 
G  X.  ran  G
)  =  dom  H
)  ->  dom  G  =  dom  H )
1312dmeqd 5153 . . . . . 6  |-  ( ( dom  G  =  ( ran  G  X.  ran  G )  /\  ( ran 
G  X.  ran  G
)  =  dom  H
)  ->  dom  dom  G  =  dom  dom  H )
1413expcom 435 . . . . 5  |-  ( ( ran  G  X.  ran  G )  =  dom  H  ->  ( dom  G  =  ( ran  G  X.  ran  G )  ->  dom  dom 
G  =  dom  dom  H ) )
1514eqcoms 2466 . . . 4  |-  ( dom 
H  =  ( ran 
G  X.  ran  G
)  ->  ( dom  G  =  ( ran  G  X.  ran  G )  ->  dom  dom  G  =  dom  dom 
H ) )
1611, 15syl 16 . . 3  |-  ( H : ( ran  G  X.  ran  G ) --> ran 
G  ->  ( dom  G  =  ( ran  G  X.  ran  G )  ->  dom  dom  G  =  dom  dom 
H ) )
1710, 16syl5com 30 . 2  |-  ( G : ( ran  G  X.  ran  G ) -onto-> ran 
G  ->  ( H : ( ran  G  X.  ran  G ) --> ran 
G  ->  dom  dom  G  =  dom  dom  H )
)
185, 7, 17sylc 60 1  |-  ( R  e.  RingOps  ->  dom  dom  G  =  dom  dom  H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    X. cxp 4949   dom cdm 4951   ran crn 4952   -->wf 5525   -onto->wfo 5527   ` cfv 5529   1stc1st 6688   2ndc2nd 6689   GrpOpcgr 23852   RingOpscrngo 24041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-fo 5535  df-fv 5537  df-ov 6206  df-1st 6690  df-2nd 6691  df-grpo 23857  df-ablo 23948  df-rngo 24042
This theorem is referenced by:  rngorn1  24085
  Copyright terms: Public domain W3C validator