MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngmgmbs4 Structured version   Unicode version

Theorem rngmgmbs4 23907
Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
rngmgmbs4  |-  ( ( G : ( X  X.  X ) --> X  /\  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) )  ->  ran  G  =  X )
Distinct variable groups:    u, G, x    u, X, x

Proof of Theorem rngmgmbs4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.12 2833 . . . . 5  |-  ( E. u  e.  X  A. x  e.  X  (
( u G x )  =  x  /\  ( x G u )  =  x )  ->  A. x  e.  X  E. u  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) )
2 simpl 457 . . . . . . . . 9  |-  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  ->  ( u G x )  =  x )
32eqcomd 2448 . . . . . . . 8  |-  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  ->  x  =  ( u G x ) )
4 oveq2 6102 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
u G y )  =  ( u G x ) )
54eqeq2d 2454 . . . . . . . . . 10  |-  ( y  =  x  ->  (
x  =  ( u G y )  <->  x  =  ( u G x ) ) )
65rspcev 3076 . . . . . . . . 9  |-  ( ( x  e.  X  /\  x  =  ( u G x ) )  ->  E. y  e.  X  x  =  ( u G y ) )
76ex 434 . . . . . . . 8  |-  ( x  e.  X  ->  (
x  =  ( u G x )  ->  E. y  e.  X  x  =  ( u G y ) ) )
83, 7syl5 32 . . . . . . 7  |-  ( x  e.  X  ->  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  ->  E. y  e.  X  x  =  ( u G y ) ) )
98reximdv 2830 . . . . . 6  |-  ( x  e.  X  ->  ( E. u  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x )  ->  E. u  e.  X  E. y  e.  X  x  =  ( u G y ) ) )
109ralimia 2792 . . . . 5  |-  ( A. x  e.  X  E. u  e.  X  (
( u G x )  =  x  /\  ( x G u )  =  x )  ->  A. x  e.  X  E. u  e.  X  E. y  e.  X  x  =  ( u G y ) )
111, 10syl 16 . . . 4  |-  ( E. u  e.  X  A. x  e.  X  (
( u G x )  =  x  /\  ( x G u )  =  x )  ->  A. x  e.  X  E. u  e.  X  E. y  e.  X  x  =  ( u G y ) )
1211anim2i 569 . . 3  |-  ( ( G : ( X  X.  X ) --> X  /\  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) )  -> 
( G : ( X  X.  X ) --> X  /\  A. x  e.  X  E. u  e.  X  E. y  e.  X  x  =  ( u G y ) ) )
13 foov 6240 . . 3  |-  ( G : ( X  X.  X ) -onto-> X  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  E. u  e.  X  E. y  e.  X  x  =  ( u G y ) ) )
1412, 13sylibr 212 . 2  |-  ( ( G : ( X  X.  X ) --> X  /\  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) )  ->  G : ( X  X.  X ) -onto-> X )
15 forn 5626 . 2  |-  ( G : ( X  X.  X ) -onto-> X  ->  ran  G  =  X )
1614, 15syl 16 1  |-  ( ( G : ( X  X.  X ) --> X  /\  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) )  ->  ran  G  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   E.wrex 2719    X. cxp 4841   ran crn 4844   -->wf 5417   -onto->wfo 5419  (class class class)co 6094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4416  ax-nul 4424  ax-pr 4534
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-nul 3641  df-if 3795  df-sn 3881  df-pr 3883  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-id 4639  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-fo 5427  df-fv 5429  df-ov 6097
This theorem is referenced by:  rngorn1eq  23910
  Copyright terms: Public domain W3C validator