MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidm Structured version   Unicode version

Theorem rnglidm 17002
Description: The unit element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
rngidm.b  |-  B  =  ( Base `  R
)
rngidm.t  |-  .x.  =  ( .r `  R )
rngidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
rnglidm  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  .x.  X )  =  X )

Proof of Theorem rnglidm
StepHypRef Expression
1 rngidm.b . . 3  |-  B  =  ( Base `  R
)
2 rngidm.t . . 3  |-  .x.  =  ( .r `  R )
3 rngidm.u . . 3  |-  .1.  =  ( 1r `  R )
41, 2, 3rngidmlem 17001 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )
54simpld 459 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  .x.  X )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   ` cfv 5579  (class class class)co 6275   Basecbs 14479   .rcmulr 14545   1rcur 16936   Ringcrg 16979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-plusg 14557  df-0g 14686  df-mnd 15721  df-mgp 16925  df-ur 16937  df-rng 16981
This theorem is referenced by:  rngidss  17005  rngcom  17007  rng1eq0  17018  rngnegl  17019  imasrng  17045  opprrng  17057  dvdsrid  17077  unitmulcl  17090  unitgrp  17093  1rinv  17105  dvreq1  17119  rnginvdv  17120  isdrng2  17182  drngmul0or  17193  isdrngd  17197  subrginv  17221  issubrg2  17225  abv1z  17257  issrngd  17286  sralmod  17609  unitrrg  17706  asclmul1  17752  asclrhm  17755  psrlmod  17818  psrlidm  17820  psrlidmOLD  17821  mplmonmul  17890  evlslem1  17948  coe1pwmul  18084  mulgrhm  18292  mulgrhmOLD  18295  mamulid  18703  madetsumid  18723  1mavmul  18810  m1detdiag  18859  mdetralt  18870  mdetunilem7  18880  mdetuni  18884  mdetmul  18885  m2detleib  18893  chfacfpmmulgsum  19125  cpmadugsumlemB  19135  nrginvrcnlem  20927  cphsubrglem  21352  ply1divex  22265  ress1r  27428  dvrcan5  27432  ornglmullt  27446  orng0le1  27451  isarchiofld  27456  mon1psubm  30760  invginvrid  31900  ply1sclrmsm  31931  ldepsprlem  32021  lfl0  33737  lfladd  33738  eqlkr3  33773  lcfrlem1  36214  hdmapinvlem4  36596  hdmapglem5  36597
  Copyright terms: Public domain W3C validator