MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidm Structured version   Unicode version

Theorem rnglidm 16658
Description: The unit element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
rngidm.b  |-  B  =  ( Base `  R
)
rngidm.t  |-  .x.  =  ( .r `  R )
rngidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
rnglidm  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  .x.  X )  =  X )

Proof of Theorem rnglidm
StepHypRef Expression
1 rngidm.b . . 3  |-  B  =  ( Base `  R
)
2 rngidm.t . . 3  |-  .x.  =  ( .r `  R )
3 rngidm.u . . 3  |-  .1.  =  ( 1r `  R )
41, 2, 3rngidmlem 16657 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )
54simpld 456 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  .x.  X )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   ` cfv 5415  (class class class)co 6090   Basecbs 14170   .rcmulr 14235   1rcur 16593   Ringcrg 16635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-plusg 14247  df-0g 14376  df-mnd 15411  df-mgp 16582  df-ur 16594  df-rng 16637
This theorem is referenced by:  rngidss  16661  rngcom  16663  rng1eq0  16674  rngnegl  16675  imasrng  16701  opprrng  16713  dvdsrid  16733  unitmulcl  16746  unitgrp  16749  1rinv  16761  dvreq1  16775  rnginvdv  16776  isdrng2  16822  drngmul0or  16833  isdrngd  16837  subrginv  16861  issubrg2  16865  abv1z  16897  issrngd  16926  sralmod  17246  unitrrg  17343  asclmul1  17388  asclrhm  17390  psrlmod  17450  psrlidm  17452  psrlidmOLD  17453  mplmonmul  17521  evlslem1  17577  coe1pwmul  17707  mulgrhm  17885  mulgrhmOLD  17888  mamulid  18263  madetsumid  18305  1mavmul  18318  mdetralt  18373  mdetunilem7  18383  mdetuni  18387  mdetmul  18388  m2detleib  18396  nrginvrcnlem  20230  cphsubrglem  20655  ply1divex  21567  ress1r  26192  dvrcan5  26196  ornglmullt  26210  orng0le1  26215  isarchiofld  26220  mon1psubm  29499  invginvrid  30689  ply1sclrmsm  30730  m1detdiag  30775  ldepsprlem  30847  lfl0  32432  lfladd  32433  eqlkr3  32468  lcfrlem1  34909  hdmapinvlem4  35291  hdmapglem5  35292
  Copyright terms: Public domain W3C validator