MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngdir Structured version   Unicode version

Theorem rngdir 16686
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.)
Hypotheses
Ref Expression
rngdi.b  |-  B  =  ( Base `  R
)
rngdi.p  |-  .+  =  ( +g  `  R )
rngdi.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
rngdir  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) )

Proof of Theorem rngdir
StepHypRef Expression
1 rngdi.b . . 3  |-  B  =  ( Base `  R
)
2 rngdi.p . . 3  |-  .+  =  ( +g  `  R )
3 rngdi.t . . 3  |-  .x.  =  ( .r `  R )
41, 2, 3rngi 16679 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )
54simprd 463 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5439  (class class class)co 6112   Basecbs 14195   +g cplusg 14259   .rcmulr 14260   Ringcrg 16667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-nul 4442
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-iota 5402  df-fv 5447  df-ov 6115  df-rng 16669
This theorem is referenced by:  rngcom  16695  rnglz  16703  rngnegl  16707  rngsubdir  16713  mulgass2  16714  rngrghm  16716  prdsrngd  16726  imasrng  16733  opprrng  16745  issubrg2  16907  cntzsubr  16919  sralmod  17290  psrlmod  17494  psrdir  17502  evlslem1  17623  frlmphl  18228  mamudi  18329  mdetrlin  18431  dvrdir  26280  lflvscl  32818  lflvsdi1  32819  dvhlveclem  34849
  Copyright terms: Public domain W3C validator