Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcvalALTV Structured version   Unicode version

Theorem rngcvalALTV 39582
Description: Value of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngcvalALTV.c  |-  C  =  (RngCatALTV `  U )
rngcvalALTV.u  |-  ( ph  ->  U  e.  V )
rngcvalALTV.b  |-  ( ph  ->  B  =  ( U  i^i Rng ) )
rngcvalALTV.h  |-  ( ph  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x RngHomo 
y ) ) )
rngcvalALTV.o  |-  ( ph  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v ) RngHomo  z ) ,  f  e.  ( ( 1st `  v
) RngHomo  ( 2nd `  v
) )  |->  ( g  o.  f ) ) ) )
Assertion
Ref Expression
rngcvalALTV  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Distinct variable groups:    f, g,
v, x, y, z   
v, B, x, y, z    v, U, x, y, z    ph, v, x, y, z
Allowed substitution hints:    ph( f, g)    B( f, g)    C( x, y, z, v, f, g)    .x. ( x, y, z, v, f, g)    U( f, g)    H( x, y, z, v, f, g)    V( x, y, z, v, f, g)

Proof of Theorem rngcvalALTV
Dummy variables  b  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcvalALTV.c . 2  |-  C  =  (RngCatALTV `  U )
2 df-rngcALTV 39581 . . . 4  |- RngCatALTV  =  ( u  e.  _V  |->  [_ ( u  i^i Rng )  / 
b ]_ { <. ( Base `  ndx ) ,  b >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x RngHomo  y ) ) >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RngHomo 
z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >. } )
32a1i 11 . . 3  |-  ( ph  -> RngCatALTV  =  ( u  e. 
_V  |->  [_ ( u  i^i Rng
)  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x RngHomo  y
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RngHomo 
z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >. } ) )
4 vex 3083 . . . . . 6  |-  u  e. 
_V
54inex1 4565 . . . . 5  |-  ( u  i^i Rng )  e.  _V
65a1i 11 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i Rng )  e.  _V )
7 ineq1 3657 . . . . . 6  |-  ( u  =  U  ->  (
u  i^i Rng )  =  ( U  i^i Rng ) )
87adantl 467 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i Rng )  =  ( U  i^i Rng ) )
9 rngcvalALTV.b . . . . . 6  |-  ( ph  ->  B  =  ( U  i^i Rng ) )
109adantr 466 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  B  =  ( U  i^i Rng ) )
118, 10eqtr4d 2466 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i Rng )  =  B )
12 simpr 462 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  b  =  B )
1312opeq2d 4194 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. ( Base `  ndx ) ,  b >.  =  <. (
Base `  ndx ) ,  B >. )
14 eqidd 2423 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x RngHomo  y )  =  ( x RngHomo  y ) )
1512, 12, 14mpt2eq123dv 6367 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( x RngHomo  y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x RngHomo  y
) ) )
16 rngcvalALTV.h . . . . . . . 8  |-  ( ph  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x RngHomo 
y ) ) )
1716ad2antrr 730 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x RngHomo  y
) ) )
1815, 17eqtr4d 2466 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( x RngHomo  y ) )  =  H )
1918opeq2d 4194 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x RngHomo  y ) ) >.  =  <. ( Hom  `  ndx ) ,  H >. )
2012sqxpeqd 4879 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
b  X.  b )  =  ( B  X.  B ) )
21 eqidd 2423 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
g  e.  ( ( 2nd `  v ) RngHomo 
z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) )  =  ( g  e.  ( ( 2nd `  v ) RngHomo  z ) ,  f  e.  ( ( 1st `  v
) RngHomo  ( 2nd `  v
) )  |->  ( g  o.  f ) ) )
2220, 12, 21mpt2eq123dv 6367 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RngHomo 
z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) ) )  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v ) RngHomo 
z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) )
23 rngcvalALTV.o . . . . . . . 8  |-  ( ph  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v ) RngHomo  z ) ,  f  e.  ( ( 1st `  v
) RngHomo  ( 2nd `  v
) )  |->  ( g  o.  f ) ) ) )
2423ad2antrr 730 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v
) RngHomo  z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) )
2522, 24eqtr4d 2466 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RngHomo 
z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) ) )  =  .x.  )
2625opeq2d 4194 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. (comp ` 
ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RngHomo 
z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >.  =  <. (comp `  ndx ) ,  .x.  >.
)
2713, 19, 26tpeq123d 4094 . . . 4  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x RngHomo  y ) ) >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RngHomo 
z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
286, 11, 27csbied2 3423 . . 3  |-  ( (
ph  /\  u  =  U )  ->  [_ (
u  i^i Rng )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x RngHomo  y
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RngHomo 
z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
29 rngcvalALTV.u . . . 4  |-  ( ph  ->  U  e.  V )
30 elex 3089 . . . 4  |-  ( U  e.  V  ->  U  e.  _V )
3129, 30syl 17 . . 3  |-  ( ph  ->  U  e.  _V )
32 tpex 6604 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. }  e.  _V
3332a1i 11 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. }  e.  _V )
343, 28, 31, 33fvmptd 5970 . 2  |-  ( ph  ->  (RngCatALTV `  U )  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
351, 34syl5eq 2475 1  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   _Vcvv 3080   [_csb 3395    i^i cin 3435   {ctp 4002   <.cop 4004    |-> cmpt 4482    X. cxp 4851    o. ccom 4857   ` cfv 5601  (class class class)co 6305    |-> cmpt2 6307   1stc1st 6805   2ndc2nd 6806   ndxcnx 15117   Basecbs 15120   Hom chom 15200  compcco 15201  Rngcrng 39493   RngHomo crngh 39504  RngCatALTVcrngcALTV 39579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-iota 5565  df-fun 5603  df-fv 5609  df-oprab 6309  df-mpt2 6310  df-rngcALTV 39581
This theorem is referenced by:  rngcbasALTV  39604  rngchomfvalALTV  39605  rngccofvalALTV  39608
  Copyright terms: Public domain W3C validator