MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcom Structured version   Unicode version

Theorem rngcom 16688
Description: Commutativity of the additive group of a ring. (See also lmodcom 17006.) (Contributed by Gérard Lang, 4-Dec-2014.)
Hypotheses
Ref Expression
rngacl.b  |-  B  =  ( Base `  R
)
rngacl.p  |-  .+  =  ( +g  `  R )
Assertion
Ref Expression
rngcom  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem rngcom
StepHypRef Expression
1 simp1 988 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
2 rngacl.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
3 eqid 2443 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
42, 3rngidcl 16680 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
51, 4syl 16 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( 1r `  R )  e.  B )
6 rngacl.p . . . . . . . . . 10  |-  .+  =  ( +g  `  R )
72, 6rngacl 16687 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  B  /\  ( 1r
`  R )  e.  B )  ->  (
( 1r `  R
)  .+  ( 1r `  R ) )  e.  B )
81, 5, 5, 7syl3anc 1218 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
)  .+  ( 1r `  R ) )  e.  B )
9 simp2 989 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
10 simp3 990 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
11 eqid 2443 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
122, 6, 11rngdi 16678 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( ( 1r `  R )  .+  ( 1r `  R ) )  e.  B  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) ( X 
.+  Y ) )  =  ( ( ( ( 1r `  R
)  .+  ( 1r `  R ) ) ( .r `  R ) X )  .+  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y ) ) )
131, 8, 9, 10, 12syl13anc 1220 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) X )  .+  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y ) ) )
142, 6rngacl 16687 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
152, 6, 11rngdir 16679 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  ( X  .+  Y )  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) ( X 
.+  Y ) )  =  ( ( ( 1r `  R ) ( .r `  R
) ( X  .+  Y ) )  .+  ( ( 1r `  R ) ( .r
`  R ) ( X  .+  Y ) ) ) )
161, 5, 5, 14, 15syl13anc 1220 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) ( X  .+  Y ) )  =  ( ( ( 1r
`  R ) ( .r `  R ) ( X  .+  Y
) )  .+  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) ) ) )
1713, 16eqtr3d 2477 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X ) 
.+  ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) Y ) )  =  ( ( ( 1r
`  R ) ( .r `  R ) ( X  .+  Y
) )  .+  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) ) ) )
182, 6, 11rngdir 16679 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  X  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X )  =  ( ( ( 1r `  R ) ( .r `  R
) X )  .+  ( ( 1r `  R ) ( .r
`  R ) X ) ) )
191, 5, 5, 9, 18syl13anc 1220 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) X )  =  ( ( ( 1r
`  R ) ( .r `  R ) X )  .+  (
( 1r `  R
) ( .r `  R ) X ) ) )
202, 11, 3rnglidm 16683 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) X )  =  X )
211, 9, 20syl2anc 661 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) X )  =  X )
2221, 21oveq12d 6124 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) X )  .+  ( ( 1r `  R ) ( .r `  R
) X ) )  =  ( X  .+  X ) )
2319, 22eqtrd 2475 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) X )  =  ( X  .+  X
) )
242, 6, 11rngdir 16679 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  Y  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) Y )  =  ( ( ( 1r `  R ) ( .r `  R
) Y )  .+  ( ( 1r `  R ) ( .r
`  R ) Y ) ) )
251, 5, 5, 10, 24syl13anc 1220 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y )  =  ( ( ( 1r
`  R ) ( .r `  R ) Y )  .+  (
( 1r `  R
) ( .r `  R ) Y ) ) )
262, 11, 3rnglidm 16683 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) Y )  =  Y )
271, 10, 26syl2anc 661 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) Y )  =  Y )
2827, 27oveq12d 6124 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) Y )  .+  ( ( 1r `  R ) ( .r `  R
) Y ) )  =  ( Y  .+  Y ) )
2925, 28eqtrd 2475 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y )  =  ( Y  .+  Y
) )
3023, 29oveq12d 6124 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X ) 
.+  ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) Y ) )  =  ( ( X  .+  X )  .+  ( Y  .+  Y ) ) )
312, 11, 3rnglidm 16683 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X  .+  Y )  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) )  =  ( X  .+  Y ) )
321, 14, 31syl2anc 661 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) )  =  ( X  .+  Y ) )
3332, 32oveq12d 6124 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) ( X  .+  Y ) )  .+  ( ( 1r `  R ) ( .r `  R
) ( X  .+  Y ) ) )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
3417, 30, 333eqtr3d 2483 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  ( Y  .+  Y ) )  =  ( ( X  .+  Y )  .+  ( X  .+  Y ) ) )
35 rnggrp 16665 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
361, 35syl 16 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Grp )
372, 6rngacl 16687 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  X  e.  B )  ->  ( X  .+  X )  e.  B )
381, 9, 9, 37syl3anc 1218 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  X )  e.  B )
392, 6grpass 15567 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( ( X  .+  X )  e.  B  /\  Y  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
4036, 38, 10, 10, 39syl13anc 1220 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
412, 6grpass 15567 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4236, 14, 9, 10, 41syl13anc 1220 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4334, 40, 423eqtr4d 2485 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y ) )
442, 6rngacl 16687 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  .+  X )  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  e.  B )
451, 38, 10, 44syl3anc 1218 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  e.  B )
462, 6rngacl 16687 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  .+  Y )  e.  B  /\  X  e.  B )  ->  (
( X  .+  Y
)  .+  X )  e.  B )
471, 14, 9, 46syl3anc 1218 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .+  X )  e.  B )
482, 6grprcan 15586 . . . . 5  |-  ( ( R  e.  Grp  /\  ( ( ( X 
.+  X )  .+  Y )  e.  B  /\  ( ( X  .+  Y )  .+  X
)  e.  B  /\  Y  e.  B )
)  ->  ( (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
4936, 45, 47, 10, 48syl13anc 1220 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( X 
.+  X )  .+  Y )  .+  Y
)  =  ( ( ( X  .+  Y
)  .+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5043, 49mpbid 210 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  X ) )
512, 6grpass 15567 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
5236, 9, 9, 10, 51syl13anc 1220 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
532, 6grpass 15567 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  X  e.  B
) )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5436, 9, 10, 9, 53syl13anc 1220 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5550, 52, 543eqtr3d 2483 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) ) )
562, 6rngacl 16687 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y  .+  X )  e.  B )
57563com23 1193 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  X )  e.  B )
582, 6grplcan 15605 . . 3  |-  ( ( R  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  ( Y  .+  X
)  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <-> 
( X  .+  Y
)  =  ( Y 
.+  X ) ) )
5936, 14, 57, 9, 58syl13anc 1220 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
6055, 59mpbid 210 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5433  (class class class)co 6106   Basecbs 14189   +g cplusg 14253   .rcmulr 14254   Grpcgrp 15425   1rcur 16618   Ringcrg 16660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-recs 6847  df-rdg 6881  df-er 7116  df-en 7326  df-dom 7327  df-sdom 7328  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-nn 10338  df-2 10395  df-ndx 14192  df-slot 14193  df-base 14194  df-sets 14195  df-plusg 14266  df-0g 14395  df-mnd 15430  df-grp 15560  df-minusg 15561  df-mgp 16607  df-ur 16619  df-rng 16662
This theorem is referenced by:  rngabl  16689
  Copyright terms: Public domain W3C validator