MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcom Unicode version

Theorem rngcom 15204
Description: Commutativity of the additive group of a ring. (See also lmodcom 15506.) (Contributed by Gérard Lang, 4-Dec-2014.)
Hypotheses
Ref Expression
rngacl.b  |-  B  =  ( Base `  R
)
rngacl.p  |-  .+  =  ( +g  `  R )
Assertion
Ref Expression
rngcom  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem rngcom
StepHypRef Expression
1 simp1 960 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
2 rngacl.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
3 eqid 2253 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
42, 3rngidcl 15196 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
51, 4syl 17 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( 1r `  R )  e.  B )
6 rngacl.p . . . . . . . . . 10  |-  .+  =  ( +g  `  R )
72, 6rngacl 15203 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  B  /\  ( 1r
`  R )  e.  B )  ->  (
( 1r `  R
)  .+  ( 1r `  R ) )  e.  B )
81, 5, 5, 7syl3anc 1187 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
)  .+  ( 1r `  R ) )  e.  B )
9 simp2 961 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
10 simp3 962 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
11 eqid 2253 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
122, 6, 11rngdi 15194 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( ( 1r `  R )  .+  ( 1r `  R ) )  e.  B  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) ( X 
.+  Y ) )  =  ( ( ( ( 1r `  R
)  .+  ( 1r `  R ) ) ( .r `  R ) X )  .+  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y ) ) )
131, 8, 9, 10, 12syl13anc 1189 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) X )  .+  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y ) ) )
142, 6rngacl 15203 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
152, 6, 11rngdir 15195 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  ( X  .+  Y )  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) ( X 
.+  Y ) )  =  ( ( ( 1r `  R ) ( .r `  R
) ( X  .+  Y ) )  .+  ( ( 1r `  R ) ( .r
`  R ) ( X  .+  Y ) ) ) )
161, 5, 5, 14, 15syl13anc 1189 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) ( X  .+  Y ) )  =  ( ( ( 1r
`  R ) ( .r `  R ) ( X  .+  Y
) )  .+  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) ) ) )
1713, 16eqtr3d 2287 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X ) 
.+  ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) Y ) )  =  ( ( ( 1r
`  R ) ( .r `  R ) ( X  .+  Y
) )  .+  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) ) ) )
182, 6, 11rngdir 15195 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  X  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X )  =  ( ( ( 1r `  R ) ( .r `  R
) X )  .+  ( ( 1r `  R ) ( .r
`  R ) X ) ) )
191, 5, 5, 9, 18syl13anc 1189 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) X )  =  ( ( ( 1r
`  R ) ( .r `  R ) X )  .+  (
( 1r `  R
) ( .r `  R ) X ) ) )
202, 11, 3rnglidm 15199 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) X )  =  X )
211, 9, 20syl2anc 645 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) X )  =  X )
2221, 21oveq12d 5728 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) X )  .+  ( ( 1r `  R ) ( .r `  R
) X ) )  =  ( X  .+  X ) )
2319, 22eqtrd 2285 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) X )  =  ( X  .+  X
) )
242, 6, 11rngdir 15195 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  Y  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) Y )  =  ( ( ( 1r `  R ) ( .r `  R
) Y )  .+  ( ( 1r `  R ) ( .r
`  R ) Y ) ) )
251, 5, 5, 10, 24syl13anc 1189 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y )  =  ( ( ( 1r
`  R ) ( .r `  R ) Y )  .+  (
( 1r `  R
) ( .r `  R ) Y ) ) )
262, 11, 3rnglidm 15199 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) Y )  =  Y )
271, 10, 26syl2anc 645 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) Y )  =  Y )
2827, 27oveq12d 5728 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) Y )  .+  ( ( 1r `  R ) ( .r `  R
) Y ) )  =  ( Y  .+  Y ) )
2925, 28eqtrd 2285 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y )  =  ( Y  .+  Y
) )
3023, 29oveq12d 5728 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X ) 
.+  ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) Y ) )  =  ( ( X  .+  X )  .+  ( Y  .+  Y ) ) )
312, 11, 3rnglidm 15199 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X  .+  Y )  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) )  =  ( X  .+  Y ) )
321, 14, 31syl2anc 645 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) )  =  ( X  .+  Y ) )
3332, 32oveq12d 5728 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) ( X  .+  Y ) )  .+  ( ( 1r `  R ) ( .r `  R
) ( X  .+  Y ) ) )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
3417, 30, 333eqtr3d 2293 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  ( Y  .+  Y ) )  =  ( ( X  .+  Y )  .+  ( X  .+  Y ) ) )
35 rnggrp 15181 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
361, 35syl 17 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Grp )
372, 6rngacl 15203 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  X  e.  B )  ->  ( X  .+  X )  e.  B )
381, 9, 9, 37syl3anc 1187 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  X )  e.  B )
392, 6grpass 14331 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( ( X  .+  X )  e.  B  /\  Y  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
4036, 38, 10, 10, 39syl13anc 1189 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
412, 6grpass 14331 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4236, 14, 9, 10, 41syl13anc 1189 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4334, 40, 423eqtr4d 2295 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y ) )
442, 6rngacl 15203 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  .+  X )  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  e.  B )
451, 38, 10, 44syl3anc 1187 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  e.  B )
462, 6rngacl 15203 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  .+  Y )  e.  B  /\  X  e.  B )  ->  (
( X  .+  Y
)  .+  X )  e.  B )
471, 14, 9, 46syl3anc 1187 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .+  X )  e.  B )
482, 6grprcan 14350 . . . . 5  |-  ( ( R  e.  Grp  /\  ( ( ( X 
.+  X )  .+  Y )  e.  B  /\  ( ( X  .+  Y )  .+  X
)  e.  B  /\  Y  e.  B )
)  ->  ( (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
4936, 45, 47, 10, 48syl13anc 1189 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( X 
.+  X )  .+  Y )  .+  Y
)  =  ( ( ( X  .+  Y
)  .+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5043, 49mpbid 203 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  X ) )
512, 6grpass 14331 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
5236, 9, 9, 10, 51syl13anc 1189 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
532, 6grpass 14331 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  X  e.  B
) )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5436, 9, 10, 9, 53syl13anc 1189 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5550, 52, 543eqtr3d 2293 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) ) )
562, 6rngacl 15203 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y  .+  X )  e.  B )
57563com23 1162 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  X )  e.  B )
582, 6grplcan 14369 . . 3  |-  ( ( R  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  ( Y  .+  X
)  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <-> 
( X  .+  Y
)  =  ( Y 
.+  X ) ) )
5936, 14, 57, 9, 58syl13anc 1189 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
6055, 59mpbid 203 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ w3a 939    = wceq 1619    e. wcel 1621   ` cfv 4592  (class class class)co 5710   Basecbs 13022   +g cplusg 13082   .rcmulr 13083   Grpcgrp 14197   Ringcrg 15172   1rcur 15174
This theorem is referenced by:  rngabl  15205
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-2 9684  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-plusg 13095  df-0g 13278  df-mnd 14202  df-grp 14324  df-minusg 14325  df-mgp 15161  df-ring 15175  df-ur 15177
  Copyright terms: Public domain W3C validator