MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngacl Unicode version

Theorem rngacl 15646
Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypotheses
Ref Expression
rngacl.b  |-  B  =  ( Base `  R
)
rngacl.p  |-  .+  =  ( +g  `  R )
Assertion
Ref Expression
rngacl  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )

Proof of Theorem rngacl
StepHypRef Expression
1 rnggrp 15624 . 2  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2 rngacl.b . . 3  |-  B  =  ( Base `  R
)
3 rngacl.p . . 3  |-  .+  =  ( +g  `  R )
42, 3grpcl 14773 . 2  |-  ( ( R  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
51, 4syl3an1 1217 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   Grpcgrp 14640   Ringcrg 15615
This theorem is referenced by:  rngcom  15647  rnglghm  15666  rngrghm  15667  imasrng  15680  divsrng2  15681  cntzsubr  15855  srngadd  15900  issrngd  15904  lmodprop2d  15961  prdslmodd  16000  psrlmod  16420  coe1add  16612  ip2subdi  16830  mpfind  19918  mdegaddle  19950  deg1addle2  19978  deg1add  19979  ply1divex  20012  mendlmod  27369  dvhlveclem  31591  baerlem3lem1  32190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-nul 4298  ax-pow 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-iota 5377  df-fv 5421  df-ov 6043  df-mnd 14645  df-grp 14767  df-rng 15618
  Copyright terms: Public domain W3C validator