Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rng1 Structured version   Unicode version

Theorem rng1 31158
Description: The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
rng1.m  |-  M  =  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. , 
<. ( .r `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }
Assertion
Ref Expression
rng1  |-  ( Z  e.  V  ->  M  e.  Ring )

Proof of Theorem rng1
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . . . 5  |-  { <. (
Base `  ndx ) ,  { Z } >. , 
<. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }  =  { <. (
Base `  ndx ) ,  { Z } >. , 
<. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }
21grp1 31155 . . . 4  |-  ( Z  e.  V  ->  { <. (
Base `  ndx ) ,  { Z } >. , 
<. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }  e.  Grp )
3 snex 4642 . . . . . . 7  |-  { Z }  e.  _V
4 rng1.m . . . . . . . 8  |-  M  =  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. , 
<. ( .r `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }
54rngbase 14406 . . . . . . 7  |-  ( { Z }  e.  _V  ->  { Z }  =  ( Base `  M )
)
63, 5ax-mp 5 . . . . . 6  |-  { Z }  =  ( Base `  M )
76eqcomi 2467 . . . . 5  |-  ( Base `  M )  =  { Z }
8 snex 4642 . . . . . 6  |-  { <. <. Z ,  Z >. ,  Z >. }  e.  _V
94rngplusg 14407 . . . . . . 7  |-  ( {
<. <. Z ,  Z >. ,  Z >. }  e.  _V  ->  { <. <. Z ,  Z >. ,  Z >. }  =  ( +g  `  M
) )
109eqcomd 2462 . . . . . 6  |-  ( {
<. <. Z ,  Z >. ,  Z >. }  e.  _V  ->  ( +g  `  M
)  =  { <. <. Z ,  Z >. ,  Z >. } )
118, 10ax-mp 5 . . . . 5  |-  ( +g  `  M )  =  { <. <. Z ,  Z >. ,  Z >. }
127, 11, 1grppropstr 15678 . . . 4  |-  ( M  e.  Grp  <->  { <. ( Base `  ndx ) ,  { Z } >. , 
<. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }  e.  Grp )
132, 12sylibr 212 . . 3  |-  ( Z  e.  V  ->  M  e.  Grp )
141mnd1 31154 . . . 4  |-  ( Z  e.  V  ->  { <. (
Base `  ndx ) ,  { Z } >. , 
<. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }  e.  Mnd )
15 eqid 2454 . . . . . . . 8  |-  (mulGrp `  M )  =  (mulGrp `  M )
1615, 6mgpbas 16720 . . . . . . 7  |-  { Z }  =  ( Base `  (mulGrp `  M )
)
1716eqcomi 2467 . . . . . 6  |-  ( Base `  (mulGrp `  M )
)  =  { Z }
181grpbase 14398 . . . . . . 7  |-  ( { Z }  e.  _V  ->  { Z }  =  ( Base `  { <. ( Base `  ndx ) ,  { Z } >. , 
<. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. } ) )
193, 18ax-mp 5 . . . . . 6  |-  { Z }  =  ( Base `  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. } )
2017, 19eqtri 2483 . . . . 5  |-  ( Base `  (mulGrp `  M )
)  =  ( Base `  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. } )
21 eqid 2454 . . . . . . . . 9  |-  ( .r
`  M )  =  ( .r `  M
)
2215, 21mgpplusg 16718 . . . . . . . 8  |-  ( .r
`  M )  =  ( +g  `  (mulGrp `  M ) )
2322eqcomi 2467 . . . . . . 7  |-  ( +g  `  (mulGrp `  M )
)  =  ( .r
`  M )
244rngmulr 14408 . . . . . . . . 9  |-  ( {
<. <. Z ,  Z >. ,  Z >. }  e.  _V  ->  { <. <. Z ,  Z >. ,  Z >. }  =  ( .r `  M ) )
258, 24ax-mp 5 . . . . . . . 8  |-  { <. <. Z ,  Z >. ,  Z >. }  =  ( .r `  M )
2625eqcomi 2467 . . . . . . 7  |-  ( .r
`  M )  =  { <. <. Z ,  Z >. ,  Z >. }
2723, 26eqtri 2483 . . . . . 6  |-  ( +g  `  (mulGrp `  M )
)  =  { <. <. Z ,  Z >. ,  Z >. }
281grpplusg 14399 . . . . . . 7  |-  ( {
<. <. Z ,  Z >. ,  Z >. }  e.  _V  ->  { <. <. Z ,  Z >. ,  Z >. }  =  ( +g  `  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. } ) )
298, 28ax-mp 5 . . . . . 6  |-  { <. <. Z ,  Z >. ,  Z >. }  =  ( +g  `  { <. (
Base `  ndx ) ,  { Z } >. , 
<. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. } )
3027, 29eqtri 2483 . . . . 5  |-  ( +g  `  (mulGrp `  M )
)  =  ( +g  `  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. } )
3120, 30mndprop 15568 . . . 4  |-  ( (mulGrp `  M )  e.  Mnd  <->  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. }  e.  Mnd )
3214, 31sylibr 212 . . 3  |-  ( Z  e.  V  ->  (mulGrp `  M )  e.  Mnd )
33 df-ov 6204 . . . . . . . . . 10  |-  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
)  =  ( {
<. <. Z ,  Z >. ,  Z >. } `  <. Z ,  Z >. )
3433a1i 11 . . . . . . . . 9  |-  ( Z  e.  V  ->  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
)  =  ( {
<. <. Z ,  Z >. ,  Z >. } `  <. Z ,  Z >. ) )
35 opex 4665 . . . . . . . . . . . 12  |-  <. Z ,  Z >.  e.  _V
3635a1i 11 . . . . . . . . . . 11  |-  ( Z  e.  V  ->  <. Z ,  Z >.  e.  _V )
37 id 22 . . . . . . . . . . 11  |-  ( Z  e.  V  ->  Z  e.  V )
3836, 37jca 532 . . . . . . . . . 10  |-  ( Z  e.  V  ->  ( <. Z ,  Z >.  e. 
_V  /\  Z  e.  V ) )
39 fvsng 6022 . . . . . . . . . 10  |-  ( (
<. Z ,  Z >.  e. 
_V  /\  Z  e.  V )  ->  ( { <. <. Z ,  Z >. ,  Z >. } `  <. Z ,  Z >. )  =  Z )
4038, 39syl 16 . . . . . . . . 9  |-  ( Z  e.  V  ->  ( { <. <. Z ,  Z >. ,  Z >. } `  <. Z ,  Z >. )  =  Z )
4134, 40eqtrd 2495 . . . . . . . 8  |-  ( Z  e.  V  ->  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
)  =  Z )
4241oveq2d 6217 . . . . . . 7  |-  ( Z  e.  V  ->  ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) )
4342, 41eqtrd 2495 . . . . . 6  |-  ( Z  e.  V  ->  ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  Z )
4441, 41oveq12d 6219 . . . . . . . . 9  |-  ( Z  e.  V  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) )
4544, 34eqtrd 2495 . . . . . . . 8  |-  ( Z  e.  V  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  ( { <. <. Z ,  Z >. ,  Z >. } `  <. Z ,  Z >. ) )
4645, 40eqtrd 2495 . . . . . . 7  |-  ( Z  e.  V  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  Z )
4746eqcomd 2462 . . . . . 6  |-  ( Z  e.  V  ->  Z  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) ) )
4843, 47eqtrd 2495 . . . . 5  |-  ( Z  e.  V  ->  ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) )
4941oveq1d 6216 . . . . . . 7  |-  ( Z  e.  V  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } Z
)  =  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )
5049, 41eqtrd 2495 . . . . . 6  |-  ( Z  e.  V  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } Z
)  =  Z )
5150, 47eqtrd 2495 . . . . 5  |-  ( Z  e.  V  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } Z
)  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) )
5248, 51jca 532 . . . 4  |-  ( Z  e.  V  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } Z
)  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) ) )
53 oveq1 6208 . . . . . . . . . 10  |-  ( a  =  Z  ->  (
a { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( Z { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) ) )
54 oveq1 6208 . . . . . . . . . . 11  |-  ( a  =  Z  ->  (
a { <. <. Z ,  Z >. ,  Z >. } b )  =  ( Z { <. <. Z ,  Z >. ,  Z >. } b ) )
55 oveq1 6208 . . . . . . . . . . 11  |-  ( a  =  Z  ->  (
a { <. <. Z ,  Z >. ,  Z >. } c )  =  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )
5654, 55oveq12d 6219 . . . . . . . . . 10  |-  ( a  =  Z  ->  (
( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  (
a { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) )
5753, 56eqeq12d 2476 . . . . . . . . 9  |-  ( a  =  Z  ->  (
( a { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  (
a { <. <. Z ,  Z >. ,  Z >. } c ) )  <->  ( Z { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) ) )
5854oveq1d 6216 . . . . . . . . . 10  |-  ( a  =  Z  ->  (
( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c ) )
5955oveq1d 6216 . . . . . . . . . 10  |-  ( a  =  Z  ->  (
( a { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) )
6058, 59eqeq12d 2476 . . . . . . . . 9  |-  ( a  =  Z  ->  (
( ( a {
<. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  <->  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) ) ) )
6157, 60anbi12d 710 . . . . . . . 8  |-  ( a  =  Z  ->  (
( ( a {
<. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( a {
<. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( a { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <->  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) ) ) )
6261ralbidv 2846 . . . . . . 7  |-  ( a  =  Z  ->  ( A. c  e.  { Z }  ( ( a { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( a {
<. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( a { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <->  A. c  e.  { Z }  (
( Z { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) ) ) )
6362ralbidv 2846 . . . . . 6  |-  ( a  =  Z  ->  ( A. b  e.  { Z } A. c  e.  { Z }  ( (
a { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( a { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  (
( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <->  A. b  e.  { Z } A. c  e.  { Z }  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) ) ) )
6463ralsng 4021 . . . . 5  |-  ( Z  e.  V  ->  ( A. a  e.  { Z } A. b  e.  { Z } A. c  e. 
{ Z }  (
( a { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  (
a { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( a {
<. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <->  A. b  e.  { Z } A. c  e.  { Z }  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) ) ) )
65 oveq1 6208 . . . . . . . . . . 11  |-  ( b  =  Z  ->  (
b { <. <. Z ,  Z >. ,  Z >. } c )  =  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )
6665oveq2d 6217 . . . . . . . . . 10  |-  ( b  =  Z  ->  ( Z { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) )
67 oveq2 6209 . . . . . . . . . . 11  |-  ( b  =  Z  ->  ( Z { <. <. Z ,  Z >. ,  Z >. } b )  =  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )
6867oveq1d 6216 . . . . . . . . . 10  |-  ( b  =  Z  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) )
6966, 68eqeq12d 2476 . . . . . . . . 9  |-  ( b  =  Z  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  <->  ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) ) )
7067oveq1d 6216 . . . . . . . . . 10  |-  ( b  =  Z  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } c ) )
7165oveq2d 6217 . . . . . . . . . 10  |-  ( b  =  Z  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) )
7270, 71eqeq12d 2476 . . . . . . . . 9  |-  ( b  =  Z  ->  (
( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  <->  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) ) )
7369, 72anbi12d 710 . . . . . . . 8  |-  ( b  =  Z  ->  (
( ( Z { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <->  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) ) ) )
7473ralbidv 2846 . . . . . . 7  |-  ( b  =  Z  ->  ( A. c  e.  { Z }  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <->  A. c  e.  { Z }  (
( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) ) ) )
7574ralsng 4021 . . . . . 6  |-  ( Z  e.  V  ->  ( A. b  e.  { Z } A. c  e.  { Z }  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <->  A. c  e.  { Z }  (
( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) ) ) )
76 oveq2 6209 . . . . . . . . . 10  |-  ( c  =  Z  ->  ( Z { <. <. Z ,  Z >. ,  Z >. } c )  =  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )
7776oveq2d 6217 . . . . . . . . 9  |-  ( c  =  Z  ->  ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) ) )
7876oveq2d 6217 . . . . . . . . 9  |-  ( c  =  Z  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) )
7977, 78eqeq12d 2476 . . . . . . . 8  |-  ( c  =  Z  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  <->  ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) ) )
80 oveq2 6209 . . . . . . . . 9  |-  ( c  =  Z  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } Z ) )
8176, 76oveq12d 6219 . . . . . . . . 9  |-  ( c  =  Z  ->  (
( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) )
8280, 81eqeq12d 2476 . . . . . . . 8  |-  ( c  =  Z  ->  (
( ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  <->  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) { <. <. Z ,  Z >. ,  Z >. } Z )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) ) )
8379, 82anbi12d 710 . . . . . . 7  |-  ( c  =  Z  ->  (
( ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <->  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } Z
)  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) ) ) )
8483ralsng 4021 . . . . . 6  |-  ( Z  e.  V  ->  ( A. c  e.  { Z }  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <->  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } Z
)  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) ) ) )
8575, 84bitrd 253 . . . . 5  |-  ( Z  e.  V  ->  ( A. b  e.  { Z } A. c  e.  { Z }  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( Z { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <->  ( ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } Z
)  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) ) ) )
8664, 85bitrd 253 . . . 4  |-  ( Z  e.  V  ->  ( A. a  e.  { Z } A. b  e.  { Z } A. c  e. 
{ Z }  (
( a { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  (
a { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( a {
<. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) ) )  <-> 
( ( Z { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) )  /\  (
( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. } Z
)  =  ( ( Z { <. <. Z ,  Z >. ,  Z >. } Z ) { <. <. Z ,  Z >. ,  Z >. }  ( Z { <. <. Z ,  Z >. ,  Z >. } Z
) ) ) ) )
8752, 86mpbird 232 . . 3  |-  ( Z  e.  V  ->  A. a  e.  { Z } A. b  e.  { Z } A. c  e.  { Z }  ( (
a { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( a { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  (
( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) ) )
8813, 32, 873jca 1168 . 2  |-  ( Z  e.  V  ->  ( M  e.  Grp  /\  (mulGrp `  M )  e.  Mnd  /\ 
A. a  e.  { Z } A. b  e. 
{ Z } A. c  e.  { Z }  ( ( a { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( a {
<. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  ( a { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) ) ) ) )
898, 9ax-mp 5 . . 3  |-  { <. <. Z ,  Z >. ,  Z >. }  =  ( +g  `  M )
906, 15, 89, 25isrng 16773 . 2  |-  ( M  e.  Ring  <->  ( M  e. 
Grp  /\  (mulGrp `  M
)  e.  Mnd  /\  A. a  e.  { Z } A. b  e.  { Z } A. c  e. 
{ Z }  (
( a { <. <. Z ,  Z >. ,  Z >. }  ( b { <. <. Z ,  Z >. ,  Z >. } c ) )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. }  (
a { <. <. Z ,  Z >. ,  Z >. } c ) )  /\  ( ( a {
<. <. Z ,  Z >. ,  Z >. } b ) { <. <. Z ,  Z >. ,  Z >. } c )  =  ( ( a { <. <. Z ,  Z >. ,  Z >. } c ) { <. <. Z ,  Z >. ,  Z >. }  (
b { <. <. Z ,  Z >. ,  Z >. } c ) ) ) ) )
9188, 90sylibr 212 1  |-  ( Z  e.  V  ->  M  e.  Ring )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   _Vcvv 3078   {csn 3986   {cpr 3988   {ctp 3990   <.cop 3992   ` cfv 5527  (class class class)co 6201   ndxcnx 14290   Basecbs 14293   +g cplusg 14358   .rcmulr 14359   Mndcmnd 15529   Grpcgrp 15530  mulGrpcmgp 16714   Ringcrg 16769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-2 10492  df-3 10493  df-n0 10692  df-z 10759  df-uz 10974  df-fz 11556  df-struct 14295  df-ndx 14296  df-slot 14297  df-base 14298  df-sets 14299  df-plusg 14371  df-mulr 14372  df-0g 14500  df-mnd 15535  df-grp 15665  df-mgp 16715  df-rng 16771
This theorem is referenced by:  rng1nnzr  31159  rngn0  31161  lmod1zr  31168
  Copyright terms: Public domain W3C validator