Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmygeid Structured version   Unicode version

Theorem rmygeid 31149
Description: Y(n) increases faster than n. Used implicitly without proof or comment in lemma 2.27 of [JonesMatijasevic] p. 697. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
rmygeid  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <_  ( A Yrm  N ) )

Proof of Theorem rmygeid
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5  |-  ( a  =  0  ->  a  =  0 )
2 oveq2 6304 . . . . 5  |-  ( a  =  0  ->  ( A Yrm  a )  =  ( A Yrm  0 ) )
31, 2breq12d 4469 . . . 4  |-  ( a  =  0  ->  (
a  <_  ( A Yrm  a )  <->  0  <_  ( A Yrm  0 ) ) )
43imbi2d 316 . . 3  |-  ( a  =  0  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
a  <_  ( A Yrm  a ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  0  <_  ( A Yrm  0 ) ) ) )
5 id 22 . . . . 5  |-  ( a  =  b  ->  a  =  b )
6 oveq2 6304 . . . . 5  |-  ( a  =  b  ->  ( A Yrm  a )  =  ( A Yrm  b ) )
75, 6breq12d 4469 . . . 4  |-  ( a  =  b  ->  (
a  <_  ( A Yrm  a )  <->  b  <_  ( A Yrm  b ) ) )
87imbi2d 316 . . 3  |-  ( a  =  b  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
a  <_  ( A Yrm  a ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  b  <_  ( A Yrm  b ) ) ) )
9 id 22 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  a  =  ( b  +  1 ) )
10 oveq2 6304 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  a )  =  ( A Yrm  ( b  +  1 ) ) )
119, 10breq12d 4469 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
a  <_  ( A Yrm  a )  <->  ( b  +  1 )  <_  ( A Yrm  ( b  +  1 ) ) ) )
1211imbi2d 316 . . 3  |-  ( a  =  ( b  +  1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
a  <_  ( A Yrm  a ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( b  +  1 )  <_  ( A Yrm  ( b  +  1 ) ) ) ) )
13 id 22 . . . . 5  |-  ( a  =  N  ->  a  =  N )
14 oveq2 6304 . . . . 5  |-  ( a  =  N  ->  ( A Yrm  a )  =  ( A Yrm  N ) )
1513, 14breq12d 4469 . . . 4  |-  ( a  =  N  ->  (
a  <_  ( A Yrm  a )  <->  N  <_  ( A Yrm  N ) ) )
1615imbi2d 316 . . 3  |-  ( a  =  N  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
a  <_  ( A Yrm  a ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  N  <_  ( A Yrm  N
) ) ) )
17 0le0 10646 . . . 4  |-  0  <_  0
18 rmy0 31112 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
1917, 18syl5breqr 4492 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <_  ( A Yrm  0 ) )
20 nn0z 10908 . . . . . . . . 9  |-  ( b  e.  NN0  ->  b  e.  ZZ )
21203ad2ant1 1017 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  b  e.  ZZ )
2221peano2zd 10993 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( b  +  1 )  e.  ZZ )
2322zred 10990 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( b  +  1 )  e.  RR )
24 simp2 997 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  A  e.  (
ZZ>= `  2 ) )
25 frmy 31097 . . . . . . . . . 10  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
2625fovcl 6406 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  ZZ )
2724, 21, 26syl2anc 661 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( A Yrm  b )  e.  ZZ )
2827peano2zd 10993 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( ( A Yrm  b )  +  1 )  e.  ZZ )
2928zred 10990 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( ( A Yrm  b )  +  1 )  e.  RR )
3025fovcl 6406 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  ZZ )
3124, 22, 30syl2anc 661 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( A Yrm  ( b  +  1 ) )  e.  ZZ )
3231zred 10990 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( A Yrm  ( b  +  1 ) )  e.  RR )
33 nn0re 10825 . . . . . . . 8  |-  ( b  e.  NN0  ->  b  e.  RR )
34333ad2ant1 1017 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  b  e.  RR )
3527zred 10990 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( A Yrm  b )  e.  RR )
36 1red 9628 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  1  e.  RR )
37 simp3 998 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  b  <_  ( A Yrm  b ) )
3834, 35, 36, 37leadd1dd 10187 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( b  +  1 )  <_  (
( A Yrm  b )  +  1 ) )
3934ltp1d 10496 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  b  <  (
b  +  1 ) )
40 ltrmy 31137 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ  /\  ( b  +  1 )  e.  ZZ )  ->  (
b  <  ( b  +  1 )  <->  ( A Yrm  b )  <  ( A Yrm  ( b  +  1 ) ) ) )
4124, 21, 22, 40syl3anc 1228 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( b  < 
( b  +  1 )  <->  ( A Yrm  b )  <  ( A Yrm  ( b  +  1 ) ) ) )
4239, 41mpbid 210 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( A Yrm  b )  <  ( A Yrm  ( b  +  1 ) ) )
43 zltp1le 10934 . . . . . . . 8  |-  ( ( ( A Yrm  b )  e.  ZZ  /\  ( A Yrm  ( b  +  1 ) )  e.  ZZ )  ->  ( ( A Yrm  b )  <  ( A Yrm  ( b  +  1 ) )  <->  ( ( A Yrm  b )  +  1 )  <_  ( A Yrm  ( b  +  1 ) ) ) )
4427, 31, 43syl2anc 661 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( ( A Yrm  b )  <  ( A Yrm  ( b  +  1 ) )  <->  ( ( A Yrm  b )  +  1 )  <_  ( A Yrm  ( b  +  1 ) ) ) )
4542, 44mpbid 210 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( ( A Yrm  b )  +  1 )  <_  ( A Yrm  ( b  +  1 ) ) )
4623, 29, 32, 38, 45letrd 9756 . . . . 5  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  b  <_  ( A Yrm  b ) )  ->  ( b  +  1 )  <_  ( A Yrm  ( b  +  1 ) ) )
47463exp 1195 . . . 4  |-  ( b  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( b  <_  ( A Yrm  b )  -> 
( b  +  1 )  <_  ( A Yrm  ( b  +  1 ) ) ) ) )
4847a2d 26 . . 3  |-  ( b  e.  NN0  ->  ( ( A  e.  ( ZZ>= ` 
2 )  ->  b  <_  ( A Yrm  b ) )  ->  ( A  e.  ( ZZ>= `  2 )  ->  ( b  +  1 )  <_  ( A Yrm  ( b  +  1 ) ) ) ) )
494, 8, 12, 16, 19, 48nn0ind 10980 . 2  |-  ( N  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  N  <_  ( A Yrm  N ) ) )
5049impcom 430 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <_  ( A Yrm  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    < clt 9645    <_ cle 9646   2c2 10606   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   Yrm crmy 31084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-fac 12357  df-bc 12384  df-hash 12409  df-shft 13003  df-cj 13035  df-re 13036  df-im 13037  df-sqrt 13171  df-abs 13172  df-limsup 13397  df-clim 13414  df-rlim 13415  df-sum 13612  df-ef 13906  df-sin 13908  df-cos 13909  df-pi 13911  df-dvds 14090  df-gcd 14248  df-numer 14371  df-denom 14372  df-struct 14737  df-ndx 14738  df-slot 14739  df-base 14740  df-sets 14741  df-ress 14742  df-plusg 14816  df-mulr 14817  df-starv 14818  df-sca 14819  df-vsca 14820  df-ip 14821  df-tset 14822  df-ple 14823  df-ds 14825  df-unif 14826  df-hom 14827  df-cco 14828  df-rest 14931  df-topn 14932  df-0g 14950  df-gsum 14951  df-topgen 14952  df-pt 14953  df-prds 14956  df-xrs 15010  df-qtop 15015  df-imas 15016  df-xps 15018  df-mre 15094  df-mrc 15095  df-acs 15097  df-mgm 16090  df-sgrp 16129  df-mnd 16139  df-submnd 16185  df-mulg 16278  df-cntz 16573  df-cmn 17018  df-psmet 18629  df-xmet 18630  df-met 18631  df-bl 18632  df-mopn 18633  df-fbas 18634  df-fg 18635  df-cnfld 18639  df-top 19617  df-bases 19619  df-topon 19620  df-topsp 19621  df-cld 19738  df-ntr 19739  df-cls 19740  df-nei 19817  df-lp 19855  df-perf 19856  df-cn 19946  df-cnp 19947  df-haus 20034  df-tx 20280  df-hmeo 20473  df-fil 20564  df-fm 20656  df-flim 20657  df-flf 20658  df-xms 21040  df-ms 21041  df-tms 21042  df-cncf 21599  df-limc 22487  df-dv 22488  df-log 23161  df-squarenn 31024  df-pell1qr 31025  df-pell14qr 31026  df-pell1234qr 31027  df-pellfund 31028  df-rmx 31085  df-rmy 31086
This theorem is referenced by:  jm2.27a  31194  jm2.27c  31196  expdiophlem1  31210
  Copyright terms: Public domain W3C validator