Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmy0 Structured version   Unicode version

Theorem rmy0 29441
Description: Value of Y sequence at 0. Part 1 of equation 2.12 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmy0  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )

Proof of Theorem rmy0
StepHypRef Expression
1 rmxy0 29435 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Xrm  0 )  =  1  /\  ( A Yrm  0 )  =  0 ) )
21simprd 463 1  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   ` cfv 5529  (class class class)co 6203   0cc0 9397   1c1 9398   2c2 10486   ZZ>=cuz 10976   Xrm crmx 29412   Yrm crmy 29413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7962  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475  ax-addf 9476  ax-mulf 9477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-omul 7038  df-er 7214  df-map 7329  df-pm 7330  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-fi 7776  df-sup 7806  df-oi 7839  df-card 8224  df-acn 8227  df-cda 8452  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-3 10496  df-4 10497  df-5 10498  df-6 10499  df-7 10500  df-8 10501  df-9 10502  df-10 10503  df-n0 10695  df-z 10762  df-dec 10871  df-uz 10977  df-q 11069  df-rp 11107  df-xneg 11204  df-xadd 11205  df-xmul 11206  df-ioo 11419  df-ioc 11420  df-ico 11421  df-icc 11422  df-fz 11559  df-fzo 11670  df-fl 11763  df-mod 11830  df-seq 11928  df-exp 11987  df-fac 12173  df-bc 12200  df-hash 12225  df-shft 12678  df-cj 12710  df-re 12711  df-im 12712  df-sqr 12846  df-abs 12847  df-limsup 13071  df-clim 13088  df-rlim 13089  df-sum 13286  df-ef 13475  df-sin 13477  df-cos 13478  df-pi 13480  df-dvds 13658  df-gcd 13813  df-numer 13935  df-denom 13936  df-struct 14298  df-ndx 14299  df-slot 14300  df-base 14301  df-sets 14302  df-ress 14303  df-plusg 14374  df-mulr 14375  df-starv 14376  df-sca 14377  df-vsca 14378  df-ip 14379  df-tset 14380  df-ple 14381  df-ds 14383  df-unif 14384  df-hom 14385  df-cco 14386  df-rest 14484  df-topn 14485  df-0g 14503  df-gsum 14504  df-topgen 14505  df-pt 14506  df-prds 14509  df-xrs 14563  df-qtop 14568  df-imas 14569  df-xps 14571  df-mre 14647  df-mrc 14648  df-acs 14650  df-mnd 15538  df-submnd 15588  df-mulg 15671  df-cntz 15958  df-cmn 16404  df-psmet 17944  df-xmet 17945  df-met 17946  df-bl 17947  df-mopn 17948  df-fbas 17949  df-fg 17950  df-cnfld 17954  df-top 18645  df-bases 18647  df-topon 18648  df-topsp 18649  df-cld 18765  df-ntr 18766  df-cls 18767  df-nei 18844  df-lp 18882  df-perf 18883  df-cn 18973  df-cnp 18974  df-haus 19061  df-tx 19277  df-hmeo 19470  df-fil 19561  df-fm 19653  df-flim 19654  df-flf 19655  df-xms 20037  df-ms 20038  df-tms 20039  df-cncf 20596  df-limc 21484  df-dv 21485  df-log 22151  df-squarenn 29353  df-pell1qr 29354  df-pell14qr 29355  df-pell1234qr 29356  df-pellfund 29357  df-rmx 29414  df-rmy 29415
This theorem is referenced by:  rmxypos  29461  rmyeq0  29467  rmynn  29470  jm2.24nn  29473  jm2.17c  29476  jm2.24  29477  rmygeid  29478  jm2.18  29508  jm2.19  29513  jm2.20nn  29517  jm2.15nn0  29523  jm2.16nn0  29524  jm2.27a  29525  jm2.27c  29527  rmydioph  29534
  Copyright terms: Public domain W3C validator