Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxycomplete Structured version   Unicode version

Theorem rmxycomplete 30749
Description: The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. This is Metamath 100 proof #39. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxycomplete  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  E. n  e.  ZZ  ( X  =  ( A Xrm  n
)  /\  Y  =  ( A Yrm  n ) ) ) )
Distinct variable groups:    A, n    n, X    n, Y

Proof of Theorem rmxycomplete
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmspecnonsq 30739 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ( NN  \NN ) )
213ad2ant1 1017 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( A ^ 2 )  -  1 )  e.  ( NN  \NN ) )
3 pellfund14b 30731 . . 3  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  E. n  e.  ZZ  ( X  +  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
42, 3syl 16 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  E. n  e.  ZZ  ( X  +  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
5 nn0re 10814 . . . . . 6  |-  ( X  e.  NN0  ->  X  e.  RR )
653ad2ant2 1018 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  X  e.  RR )
7 rmspecpos 30748 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  RR+ )
87rpsqrtcld 13218 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  RR+ )
98rpred 11266 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  RR )
1093ad2ant1 1017 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  RR )
11 zre 10878 . . . . . . 7  |-  ( Y  e.  ZZ  ->  Y  e.  RR )
12113ad2ant3 1019 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  Y  e.  RR )
1310, 12remulcld 9634 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y )  e.  RR )
146, 13readdcld 9633 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  e.  RR )
1514biantrurd 508 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  <->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  e.  RR  /\  E. x  e.  NN0  E. y  e.  ZZ  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( x  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) )  /\  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
16 simpl2 1000 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  ->  X  e.  NN0 )
17 simpl3 1001 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  ->  Y  e.  ZZ )
18 eqidd 2468 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  -> 
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) ) )
19 simpr 461 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  -> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 )
20 oveq1 6301 . . . . . . . . 9  |-  ( x  =  X  ->  (
x  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) ) )
2120eqeq2d 2481 . . . . . . . 8  |-  ( x  =  X  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  <->  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( X  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) ) ) )
22 oveq1 6301 . . . . . . . . . 10  |-  ( x  =  X  ->  (
x ^ 2 )  =  ( X ^
2 ) )
2322oveq1d 6309 . . . . . . . . 9  |-  ( x  =  X  ->  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) ) )
2423eqeq1d 2469 . . . . . . . 8  |-  ( x  =  X  ->  (
( ( x ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1  <->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) )
2521, 24anbi12d 710 . . . . . . 7  |-  ( x  =  X  ->  (
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  <->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) )  /\  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1 ) ) )
26 oveq2 6302 . . . . . . . . . 10  |-  ( y  =  Y  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y )  =  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )
2726oveq2d 6310 . . . . . . . . 9  |-  ( y  =  Y  ->  ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) ) )
2827eqeq2d 2481 . . . . . . . 8  |-  ( y  =  Y  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  <->  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( X  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  Y ) ) ) )
29 oveq1 6301 . . . . . . . . . . 11  |-  ( y  =  Y  ->  (
y ^ 2 )  =  ( Y ^
2 ) )
3029oveq2d 6310 . . . . . . . . . 10  |-  ( y  =  Y  ->  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) )  =  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^ 2 ) ) )
3130oveq2d 6310 . . . . . . . . 9  |-  ( y  =  Y  ->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  ( Y ^ 2 ) ) ) )
3231eqeq1d 2469 . . . . . . . 8  |-  ( y  =  Y  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1  <->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 ) )
3328, 32anbi12d 710 . . . . . . 7  |-  ( y  =  Y  ->  (
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  <->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  /\  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) ) )
3425, 33rspc2ev 3230 . . . . . 6  |-  ( ( X  e.  NN0  /\  Y  e.  ZZ  /\  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 ) )  ->  E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) )
3516, 17, 18, 19, 34syl112anc 1232 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  ->  E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) )
3635ex 434 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  ->  E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) )
37 rmspecsqrtnq 30738 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
38373ad2ant1 1017 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  ( CC  \  QQ ) )
3938adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
40 nn0ssq 11200 . . . . . . . . . . 11  |-  NN0  C_  QQ
41 simp2 997 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  X  e.  NN0 )
4240, 41sseldi 3507 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  X  e.  QQ )
4342adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  X  e.  QQ )
44 zq 11198 . . . . . . . . . . 11  |-  ( Y  e.  ZZ  ->  Y  e.  QQ )
45443ad2ant3 1019 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  Y  e.  QQ )
4645adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  Y  e.  QQ )
4740sseli 3505 . . . . . . . . . 10  |-  ( x  e.  NN0  ->  x  e.  QQ )
4847ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  x  e.  QQ )
49 zq 11198 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  QQ )
5049ad2antll 728 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  y  e.  QQ )
51 qirropth 30740 . . . . . . . . 9  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( X  e.  QQ  /\  Y  e.  QQ )  /\  ( x  e.  QQ  /\  y  e.  QQ ) )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  <->  ( X  =  x  /\  Y  =  y ) ) )
5239, 43, 46, 48, 50, 51syl122anc 1237 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) )  <->  ( X  =  x  /\  Y  =  y ) ) )
5352biimpd 207 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) )  ->  ( X  =  x  /\  Y  =  y ) ) )
5453anim1d 564 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  -> 
( ( X  =  x  /\  Y  =  y )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) )
55 oveq1 6301 . . . . . . . . . 10  |-  ( X  =  x  ->  ( X ^ 2 )  =  ( x ^ 2 ) )
56 oveq1 6301 . . . . . . . . . . 11  |-  ( Y  =  y  ->  ( Y ^ 2 )  =  ( y ^ 2 ) )
5756oveq2d 6310 . . . . . . . . . 10  |-  ( Y  =  y  ->  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) )  =  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) )
5855, 57oveqan12d 6313 . . . . . . . . 9  |-  ( ( X  =  x  /\  Y  =  y )  ->  ( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) ) )
5958eqcomd 2475 . . . . . . . 8  |-  ( ( X  =  x  /\  Y  =  y )  ->  ( ( x ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^ 2 ) ) ) )
6059eqeq1d 2469 . . . . . . 7  |-  ( ( X  =  x  /\  Y  =  y )  ->  ( ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) )  =  1  <-> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) )
6160biimpa 484 . . . . . 6  |-  ( ( ( X  =  x  /\  Y  =  y )  /\  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1 )  ->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )
6254, 61syl6 33 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  -> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) )
6362rexlimdvva 2966 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  -> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) )
6436, 63impbid 191 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  E. x  e.  NN0  E. y  e.  ZZ  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( x  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) )  /\  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) )  =  1 ) ) )
65 elpell14qr 30681 . . . 4  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  e.  RR  /\ 
E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) ) )
662, 65syl 16 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  e.  RR  /\ 
E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) ) )
6715, 64, 663bitr4d 285 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  e.  (Pell14QR `  ( ( A ^ 2 )  - 
1 ) ) ) )
6838adantr 465 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  ( CC  \  QQ ) )
6942adantr 465 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  X  e.  QQ )
7045adantr 465 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  Y  e.  QQ )
71 frmx 30745 . . . . . . . 8  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
7271a1i 11 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  -> Xrm  : ( ( ZZ>= `  2 )  X.  ZZ ) --> NN0 )
73 simpl1 999 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  A  e.  ( ZZ>= `  2 )
)
74 simpr 461 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
7572, 73, 74fovrnd 6441 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Xrm 
n )  e.  NN0 )
7640, 75sseldi 3507 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Xrm 
n )  e.  QQ )
77 zssq 11199 . . . . . 6  |-  ZZ  C_  QQ
78 frmy 30746 . . . . . . . 8  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
7978a1i 11 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  -> Yrm  : ( ( ZZ>= `  2 )  X.  ZZ ) --> ZZ )
8079, 73, 74fovrnd 6441 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Yrm 
n )  e.  ZZ )
8177, 80sseldi 3507 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Yrm 
n )  e.  QQ )
82 qirropth 30740 . . . . 5  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( X  e.  QQ  /\  Y  e.  QQ )  /\  ( ( A Xrm  n )  e.  QQ  /\  ( A Yrm  n )  e.  QQ ) )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( ( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  <->  ( X  =  ( A Xrm  n )  /\  Y  =  ( A Yrm  n ) ) ) )
8368, 69, 70, 76, 81, 82syl122anc 1237 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( ( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  <->  ( X  =  ( A Xrm  n )  /\  Y  =  ( A Yrm  n ) ) ) )
84 rmxyval 30747 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  n  e.  ZZ )  ->  (
( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ n ) )
85843ad2antl1 1158 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ n ) )
86 rmspecfund 30741 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  =  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
87863ad2ant1 1017 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (PellFund `  ( ( A ^
2 )  -  1 ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
8887adantr 465 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (PellFund `  ( ( A ^
2 )  -  1 ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
8988oveq1d 6309 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
(PellFund `  ( ( A ^ 2 )  - 
1 ) ) ^
n )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ n ) )
9085, 89eqtr4d 2511 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  =  ( (PellFund `  (
( A ^ 2 )  -  1 ) ) ^ n ) )
9190eqeq2d 2481 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( ( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  <->  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( (PellFund `  ( ( A ^ 2 )  - 
1 ) ) ^
n ) ) )
9283, 91bitr3d 255 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( X  =  ( A Xrm  n )  /\  Y  =  ( A Yrm  n ) )  <->  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
9392rexbidva 2975 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( E. n  e.  ZZ  ( X  =  ( A Xrm 
n )  /\  Y  =  ( A Yrm  n ) )  <->  E. n  e.  ZZ  ( X  +  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
944, 67, 933bitr4d 285 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  E. n  e.  ZZ  ( X  =  ( A Xrm  n
)  /\  Y  =  ( A Yrm  n ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2818    \ cdif 3478    X. cxp 5002   -->wf 5589   ` cfv 5593  (class class class)co 6294   CCcc 9500   RRcr 9501   1c1 9503    + caddc 9505    x. cmul 9507    - cmin 9815   NNcn 10546   2c2 10595   NN0cn0 10805   ZZcz 10874   ZZ>=cuz 11092   QQcq 11192   ^cexp 12144   sqrcsqrt 13041  ◻NNcsquarenn 30668  Pell14QRcpell14qr 30671  PellFundcpellfund 30672   Xrm crmx 30732   Yrm crmy 30733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-inf2 8068  ax-cnex 9558  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579  ax-pre-sup 9580  ax-addf 9581  ax-mulf 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-int 4288  df-iun 4332  df-iin 4333  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-of 6534  df-om 6695  df-1st 6794  df-2nd 6795  df-supp 6912  df-recs 7052  df-rdg 7086  df-1o 7140  df-2o 7141  df-oadd 7144  df-omul 7145  df-er 7321  df-map 7432  df-pm 7433  df-ixp 7480  df-en 7527  df-dom 7528  df-sdom 7529  df-fin 7530  df-fsupp 7840  df-fi 7881  df-sup 7911  df-oi 7945  df-card 8330  df-acn 8333  df-cda 8558  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-div 10217  df-nn 10547  df-2 10604  df-3 10605  df-4 10606  df-5 10607  df-6 10608  df-7 10609  df-8 10610  df-9 10611  df-10 10612  df-n0 10806  df-z 10875  df-dec 10987  df-uz 11093  df-q 11193  df-rp 11231  df-xneg 11328  df-xadd 11329  df-xmul 11330  df-ioo 11543  df-ioc 11544  df-ico 11545  df-icc 11546  df-fz 11683  df-fzo 11803  df-fl 11907  df-mod 11975  df-seq 12086  df-exp 12145  df-fac 12332  df-bc 12359  df-hash 12384  df-shft 12875  df-cj 12907  df-re 12908  df-im 12909  df-sqrt 13043  df-abs 13044  df-limsup 13269  df-clim 13286  df-rlim 13287  df-sum 13484  df-ef 13677  df-sin 13679  df-cos 13680  df-pi 13682  df-dvds 13860  df-gcd 14016  df-numer 14139  df-denom 14140  df-struct 14504  df-ndx 14505  df-slot 14506  df-base 14507  df-sets 14508  df-ress 14509  df-plusg 14580  df-mulr 14581  df-starv 14582  df-sca 14583  df-vsca 14584  df-ip 14585  df-tset 14586  df-ple 14587  df-ds 14589  df-unif 14590  df-hom 14591  df-cco 14592  df-rest 14690  df-topn 14691  df-0g 14709  df-gsum 14710  df-topgen 14711  df-pt 14712  df-prds 14715  df-xrs 14769  df-qtop 14774  df-imas 14775  df-xps 14777  df-mre 14853  df-mrc 14854  df-acs 14856  df-mgm 15741  df-sgrp 15764  df-mnd 15774  df-submnd 15820  df-mulg 15909  df-cntz 16204  df-cmn 16650  df-psmet 18258  df-xmet 18259  df-met 18260  df-bl 18261  df-mopn 18262  df-fbas 18263  df-fg 18264  df-cnfld 18268  df-top 19245  df-bases 19247  df-topon 19248  df-topsp 19249  df-cld 19365  df-ntr 19366  df-cls 19367  df-nei 19444  df-lp 19482  df-perf 19483  df-cn 19573  df-cnp 19574  df-haus 19661  df-tx 19908  df-hmeo 20101  df-fil 20192  df-fm 20284  df-flim 20285  df-flf 20286  df-xms 20668  df-ms 20669  df-tms 20670  df-cncf 21227  df-limc 22115  df-dv 22116  df-log 22787  df-squarenn 30673  df-pell1qr 30674  df-pell14qr 30675  df-pell1234qr 30676  df-pellfund 30677  df-rmx 30734  df-rmy 30735
This theorem is referenced by:  rmxynorm  30750  jm2.27b  30844
  Copyright terms: Public domain W3C validator