Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxycomplete Structured version   Unicode version

Theorem rmxycomplete 29105
Description: The X and Y sequences taken together enumerate all solutions to the corresponding Pell equation in the right half-plane. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxycomplete  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  E. n  e.  ZZ  ( X  =  ( A Xrm  n
)  /\  Y  =  ( A Yrm  n ) ) ) )
Distinct variable groups:    A, n    n, X    n, Y

Proof of Theorem rmxycomplete
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmspecnonsq 29095 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ( NN  \NN ) )
213ad2ant1 1004 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( A ^ 2 )  -  1 )  e.  ( NN  \NN ) )
3 pellfund14b 29087 . . 3  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  E. n  e.  ZZ  ( X  +  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
42, 3syl 16 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  E. n  e.  ZZ  ( X  +  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
5 nn0re 10578 . . . . . 6  |-  ( X  e.  NN0  ->  X  e.  RR )
653ad2ant2 1005 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  X  e.  RR )
7 rmspecpos 29104 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  RR+ )
87rpsqrcld 12884 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  RR+ )
98rpred 11017 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  RR )
1093ad2ant1 1004 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  RR )
11 zre 10640 . . . . . . 7  |-  ( Y  e.  ZZ  ->  Y  e.  RR )
12113ad2ant3 1006 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  Y  e.  RR )
1310, 12remulcld 9404 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y )  e.  RR )
146, 13readdcld 9403 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  e.  RR )
1514biantrurd 505 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  <->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  e.  RR  /\  E. x  e.  NN0  E. y  e.  ZZ  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( x  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) )  /\  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
16 simpl2 987 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  ->  X  e.  NN0 )
17 simpl3 988 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  ->  Y  e.  ZZ )
18 eqidd 2436 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  -> 
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) ) )
19 simpr 458 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  -> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 )
20 oveq1 6089 . . . . . . . . 9  |-  ( x  =  X  ->  (
x  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) ) )
2120eqeq2d 2446 . . . . . . . 8  |-  ( x  =  X  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  <->  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( X  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) ) ) )
22 oveq1 6089 . . . . . . . . . 10  |-  ( x  =  X  ->  (
x ^ 2 )  =  ( X ^
2 ) )
2322oveq1d 6097 . . . . . . . . 9  |-  ( x  =  X  ->  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) ) )
2423eqeq1d 2443 . . . . . . . 8  |-  ( x  =  X  ->  (
( ( x ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1  <->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) )
2521, 24anbi12d 705 . . . . . . 7  |-  ( x  =  X  ->  (
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  <->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) )  /\  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1 ) ) )
26 oveq2 6090 . . . . . . . . . 10  |-  ( y  =  Y  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y )  =  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )
2726oveq2d 6098 . . . . . . . . 9  |-  ( y  =  Y  ->  ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) ) )
2827eqeq2d 2446 . . . . . . . 8  |-  ( y  =  Y  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  <->  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( X  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  Y ) ) ) )
29 oveq1 6089 . . . . . . . . . . 11  |-  ( y  =  Y  ->  (
y ^ 2 )  =  ( Y ^
2 ) )
3029oveq2d 6098 . . . . . . . . . 10  |-  ( y  =  Y  ->  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) )  =  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^ 2 ) ) )
3130oveq2d 6098 . . . . . . . . 9  |-  ( y  =  Y  ->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  ( Y ^ 2 ) ) ) )
3231eqeq1d 2443 . . . . . . . 8  |-  ( y  =  Y  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1  <->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 ) )
3328, 32anbi12d 705 . . . . . . 7  |-  ( y  =  Y  ->  (
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  <->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  /\  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) ) )
3425, 33rspc2ev 3072 . . . . . 6  |-  ( ( X  e.  NN0  /\  Y  e.  ZZ  /\  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 ) )  ->  E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) )
3516, 17, 18, 19, 34syl112anc 1217 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )  ->  E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) )
3635ex 434 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  ->  E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) )
37 rmspecsqrnq 29094 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
38373ad2ant1 1004 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  ( CC  \  QQ ) )
3938adantr 462 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
40 nn0ssq 10951 . . . . . . . . . . 11  |-  NN0  C_  QQ
41 simp2 984 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  X  e.  NN0 )
4240, 41sseldi 3344 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  X  e.  QQ )
4342adantr 462 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  X  e.  QQ )
44 zq 10949 . . . . . . . . . . 11  |-  ( Y  e.  ZZ  ->  Y  e.  QQ )
45443ad2ant3 1006 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  Y  e.  QQ )
4645adantr 462 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  Y  e.  QQ )
4740sseli 3342 . . . . . . . . . 10  |-  ( x  e.  NN0  ->  x  e.  QQ )
4847ad2antrl 722 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  x  e.  QQ )
49 zq 10949 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  QQ )
5049ad2antll 723 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  y  e.  QQ )
51 qirropth 29096 . . . . . . . . 9  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( X  e.  QQ  /\  Y  e.  QQ )  /\  ( x  e.  QQ  /\  y  e.  QQ ) )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  <->  ( X  =  x  /\  Y  =  y ) ) )
5239, 43, 46, 48, 50, 51syl122anc 1222 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) )  <->  ( X  =  x  /\  Y  =  y ) ) )
5352biimpd 207 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  y ) )  ->  ( X  =  x  /\  Y  =  y ) ) )
5453anim1d 561 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  -> 
( ( X  =  x  /\  Y  =  y )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) )
55 oveq1 6089 . . . . . . . . . 10  |-  ( X  =  x  ->  ( X ^ 2 )  =  ( x ^ 2 ) )
56 oveq1 6089 . . . . . . . . . . 11  |-  ( Y  =  y  ->  ( Y ^ 2 )  =  ( y ^ 2 ) )
5756oveq2d 6098 . . . . . . . . . 10  |-  ( Y  =  y  ->  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) )  =  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) )
5855, 57oveqan12d 6101 . . . . . . . . 9  |-  ( ( X  =  x  /\  Y  =  y )  ->  ( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) ) )
5958eqcomd 2440 . . . . . . . 8  |-  ( ( X  =  x  /\  Y  =  y )  ->  ( ( x ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  ( ( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^ 2 ) ) ) )
6059eqeq1d 2443 . . . . . . 7  |-  ( ( X  =  x  /\  Y  =  y )  ->  ( ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) )  =  1  <-> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) )
6160biimpa 481 . . . . . 6  |-  ( ( ( X  =  x  /\  Y  =  y )  /\  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^ 2 ) ) )  =  1 )  ->  (
( X ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( Y ^
2 ) ) )  =  1 )
6254, 61syl6 33 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  (
x  e.  NN0  /\  y  e.  ZZ )
)  ->  ( (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  -> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) )
6362rexlimdvva 2840 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 )  -> 
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1 ) )
6436, 63impbid 191 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  E. x  e.  NN0  E. y  e.  ZZ  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( x  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  y ) )  /\  ( ( x ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
y ^ 2 ) ) )  =  1 ) ) )
65 elpell14qr 29037 . . . 4  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  e.  RR  /\ 
E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) ) )
662, 65syl 16 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  <->  ( ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  e.  RR  /\ 
E. x  e.  NN0  E. y  e.  ZZ  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( x  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  y
) )  /\  (
( x ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( y ^
2 ) ) )  =  1 ) ) ) )
6715, 64, 663bitr4d 285 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  ( X  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  Y ) )  e.  (Pell14QR `  ( ( A ^ 2 )  - 
1 ) ) ) )
6838adantr 462 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  ( CC  \  QQ ) )
6942adantr 462 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  X  e.  QQ )
7045adantr 462 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  Y  e.  QQ )
71 frmx 29101 . . . . . . . 8  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
7271a1i 11 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  -> Xrm  : ( ( ZZ>= `  2 )  X.  ZZ ) --> NN0 )
73 simpl1 986 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  A  e.  ( ZZ>= `  2 )
)
74 simpr 458 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
7572, 73, 74fovrnd 6226 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Xrm 
n )  e.  NN0 )
7640, 75sseldi 3344 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Xrm 
n )  e.  QQ )
77 zssq 10950 . . . . . 6  |-  ZZ  C_  QQ
78 frmy 29102 . . . . . . . 8  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
7978a1i 11 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  -> Yrm  : ( ( ZZ>= `  2 )  X.  ZZ ) --> ZZ )
8079, 73, 74fovrnd 6226 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Yrm 
n )  e.  ZZ )
8177, 80sseldi 3344 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  ( A Yrm 
n )  e.  QQ )
82 qirropth 29096 . . . . 5  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( X  e.  QQ  /\  Y  e.  QQ )  /\  ( ( A Xrm  n )  e.  QQ  /\  ( A Yrm  n )  e.  QQ ) )  -> 
( ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( ( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  <->  ( X  =  ( A Xrm  n )  /\  Y  =  ( A Yrm  n ) ) ) )
8368, 69, 70, 76, 81, 82syl122anc 1222 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( ( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  <->  ( X  =  ( A Xrm  n )  /\  Y  =  ( A Yrm  n ) ) ) )
84 rmxyval 29103 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  n  e.  ZZ )  ->  (
( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ n ) )
85843ad2antl1 1145 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ n ) )
86 rmspecfund 29097 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  =  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
87863ad2ant1 1004 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (PellFund `  ( ( A ^
2 )  -  1 ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
8887adantr 462 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (PellFund `  ( ( A ^
2 )  -  1 ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
8988oveq1d 6097 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
(PellFund `  ( ( A ^ 2 )  - 
1 ) ) ^
n )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ n ) )
9085, 89eqtr4d 2470 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  =  ( (PellFund `  (
( A ^ 2 )  -  1 ) ) ^ n ) )
9190eqeq2d 2446 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( ( A Xrm  n )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  n ) ) )  <->  ( X  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  Y
) )  =  ( (PellFund `  ( ( A ^ 2 )  - 
1 ) ) ^
n ) ) )
9283, 91bitr3d 255 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( X  =  ( A Xrm  n )  /\  Y  =  ( A Yrm  n ) )  <->  ( X  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
9392rexbidva 2724 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  ( E. n  e.  ZZ  ( X  =  ( A Xrm 
n )  /\  Y  =  ( A Yrm  n ) )  <->  E. n  e.  ZZ  ( X  +  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  Y ) )  =  ( (PellFund `  ( ( A ^
2 )  -  1 ) ) ^ n
) ) )
944, 67, 933bitr4d 285 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  X  e.  NN0  /\  Y  e.  ZZ )  ->  (
( ( X ^
2 )  -  (
( ( A ^
2 )  -  1 )  x.  ( Y ^ 2 ) ) )  =  1  <->  E. n  e.  ZZ  ( X  =  ( A Xrm  n
)  /\  Y  =  ( A Yrm  n ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1757   E.wrex 2708    \ cdif 3315    X. cxp 4827   -->wf 5404   ` cfv 5408  (class class class)co 6082   CCcc 9270   RRcr 9271   1c1 9273    + caddc 9275    x. cmul 9277    - cmin 9585   NNcn 10312   2c2 10361   NN0cn0 10569   ZZcz 10636   ZZ>=cuz 10851   QQcq 10943   ^cexp 11851   sqrcsqr 12708  ◻NNcsquarenn 29024  Pell14QRcpell14qr 29027  PellFundcpellfund 29028   Xrm crmx 29088   Yrm crmy 29089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-inf2 7837  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350  ax-addf 9351  ax-mulf 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-iin 4164  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-se 4669  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-isom 5417  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6311  df-om 6468  df-1st 6568  df-2nd 6569  df-supp 6682  df-recs 6820  df-rdg 6854  df-1o 6910  df-2o 6911  df-oadd 6914  df-omul 6915  df-er 7091  df-map 7206  df-pm 7207  df-ixp 7254  df-en 7301  df-dom 7302  df-sdom 7303  df-fin 7304  df-fsupp 7611  df-fi 7651  df-sup 7681  df-oi 7714  df-card 8099  df-acn 8102  df-cda 8327  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-3 10371  df-4 10372  df-5 10373  df-6 10374  df-7 10375  df-8 10376  df-9 10377  df-10 10378  df-n0 10570  df-z 10637  df-dec 10746  df-uz 10852  df-q 10944  df-rp 10982  df-xneg 11079  df-xadd 11080  df-xmul 11081  df-ioo 11294  df-ioc 11295  df-ico 11296  df-icc 11297  df-fz 11427  df-fzo 11535  df-fl 11628  df-mod 11695  df-seq 11793  df-exp 11852  df-fac 12038  df-bc 12065  df-hash 12090  df-shft 12542  df-cj 12574  df-re 12575  df-im 12576  df-sqr 12710  df-abs 12711  df-limsup 12935  df-clim 12952  df-rlim 12953  df-sum 13150  df-ef 13338  df-sin 13340  df-cos 13341  df-pi 13343  df-dvds 13521  df-gcd 13676  df-numer 13798  df-denom 13799  df-struct 14161  df-ndx 14162  df-slot 14163  df-base 14164  df-sets 14165  df-ress 14166  df-plusg 14236  df-mulr 14237  df-starv 14238  df-sca 14239  df-vsca 14240  df-ip 14241  df-tset 14242  df-ple 14243  df-ds 14245  df-unif 14246  df-hom 14247  df-cco 14248  df-rest 14346  df-topn 14347  df-0g 14365  df-gsum 14366  df-topgen 14367  df-pt 14368  df-prds 14371  df-xrs 14425  df-qtop 14430  df-imas 14431  df-xps 14433  df-mre 14509  df-mrc 14510  df-acs 14512  df-mnd 15400  df-submnd 15450  df-mulg 15530  df-cntz 15817  df-cmn 16261  df-psmet 17655  df-xmet 17656  df-met 17657  df-bl 17658  df-mopn 17659  df-fbas 17660  df-fg 17661  df-cnfld 17665  df-top 18347  df-bases 18349  df-topon 18350  df-topsp 18351  df-cld 18467  df-ntr 18468  df-cls 18469  df-nei 18546  df-lp 18584  df-perf 18585  df-cn 18675  df-cnp 18676  df-haus 18763  df-tx 18979  df-hmeo 19172  df-fil 19263  df-fm 19355  df-flim 19356  df-flf 19357  df-xms 19739  df-ms 19740  df-tms 19741  df-cncf 20298  df-limc 21185  df-dv 21186  df-log 21895  df-squarenn 29029  df-pell1qr 29030  df-pell14qr 29031  df-pell1234qr 29032  df-pellfund 29033  df-rmx 29090  df-rmy 29091
This theorem is referenced by:  rmxynorm  29106  jm2.27b  29202
  Copyright terms: Public domain W3C validator