Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxyadd Structured version   Unicode version

Theorem rmxyadd 29233
Description: Addition formula for X and Y sequences. See rmxadd 29239 and rmyadd 29243 for most uses. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxyadd  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  ( M  +  N ) )  =  ( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( A ^
2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm 
N ) ) ) )  /\  ( A Yrm  ( M  +  N ) )  =  ( ( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) ) )

Proof of Theorem rmxyadd
StepHypRef Expression
1 simp1 988 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A  e.  ( ZZ>= `  2 )
)
2 zaddcl 10677 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
323adant1 1006 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N )  e.  ZZ )
4 rmxyval 29227 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  +  N )  e.  ZZ )  ->  (
( A Xrm  ( M  +  N ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( M  +  N ) ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ ( M  +  N ) ) )
51, 3, 4syl2anc 661 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  ( M  +  N ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( M  +  N ) ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ ( M  +  N ) ) )
6 eluzelz 10862 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
763ad2ant1 1009 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A  e.  ZZ )
87zcnd 10740 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  A  e.  CC )
9 zq 10951 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  QQ )
10 qsqcl 11929 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  ( A ^ 2 )  e.  QQ )
117, 9, 103syl 20 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A ^ 2 )  e.  QQ )
12 zssq 10952 . . . . . . . . . . 11  |-  ZZ  C_  QQ
13 1z 10668 . . . . . . . . . . 11  |-  1  e.  ZZ
1412, 13sselii 3348 . . . . . . . . . 10  |-  1  e.  QQ
1514a1i 11 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  QQ )
16 qsubcl 10964 . . . . . . . . 9  |-  ( ( ( A ^ 2 )  e.  QQ  /\  1  e.  QQ )  ->  ( ( A ^
2 )  -  1 )  e.  QQ )
1711, 15, 16syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A ^ 2 )  -  1 )  e.  QQ )
18 qcn 10959 . . . . . . . 8  |-  ( ( ( A ^ 2 )  -  1 )  e.  QQ  ->  (
( A ^ 2 )  -  1 )  e.  CC )
1917, 18syl 16 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A ^ 2 )  -  1 )  e.  CC )
2019sqrcld 12915 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  CC )
218, 20addcld 9397 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) )  e.  CC )
22 rmbaserp 29231 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  e.  RR+ )
2322rpne0d 11024 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  =/=  0
)
24233ad2ant1 1009 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) )  =/=  0 )
25 simp2 989 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
26 simp3 990 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
27 expaddz 11900 . . . . 5  |-  ( ( ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) )  e.  CC  /\  ( A  +  ( sqr `  ( ( A ^ 2 )  - 
1 ) ) )  =/=  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) ^
( M  +  N
) )  =  ( ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ M )  x.  ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) )
2821, 24, 25, 26, 27syl22anc 1219 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ ( M  +  N ) )  =  ( ( ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) ^ M )  x.  (
( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ N ) ) )
29 frmx 29225 . . . . . . . . 9  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
3029a1i 11 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> Xrm  : ( ( ZZ>= `  2 )  X.  ZZ ) --> NN0 )
3130, 1, 25fovrnd 6230 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Xrm 
M )  e.  NN0 )
3231nn0cnd 10630 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Xrm 
M )  e.  CC )
33 frmy 29226 . . . . . . . . . 10  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
3433a1i 11 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> Yrm  : ( ( ZZ>= `  2 )  X.  ZZ ) --> ZZ )
3534, 1, 25fovrnd 6230 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
3635zcnd 10740 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  e.  CC )
3720, 36mulcld 9398 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) )  e.  CC )
3830, 1, 26fovrnd 6230 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
3938nn0cnd 10630 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  CC )
4034, 1, 26fovrnd 6230 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
4140zcnd 10740 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  CC )
4220, 41mulcld 9398 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  e.  CC )
4332, 37, 39, 42muladdd 9794 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Xrm  M )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
M ) ) )  x.  ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  =  ( ( ( ( A Xrm  M )  x.  ( A Xrm 
N ) )  +  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) )  x.  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) ) )  +  ( ( ( A Xrm  M )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) )  +  ( ( A Xrm  N )  x.  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
M ) ) ) ) ) )
44 rmxyval 29227 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  (
( A Xrm  M )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ M ) )
451, 25, 44syl2anc 661 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  M )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ M ) )
46 rmxyval 29227 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  (
( A Xrm  N )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ N ) )
471, 26, 46syl2anc 661 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  N )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) )  =  ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ N ) )
4845, 47oveq12d 6104 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Xrm  M )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
M ) ) )  x.  ( ( A Xrm  N )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  =  ( ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ M
)  x.  ( ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) ^ N ) ) )
4943, 48eqtr3d 2472 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) ) )  +  ( ( ( A Xrm  M )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) )  +  ( ( A Xrm  N )  x.  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
M ) ) ) ) )  =  ( ( ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ M )  x.  ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) )
5020, 41, 20, 36mul4d 9573 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) )  =  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( sqr `  ( ( A ^ 2 )  - 
1 ) ) )  x.  ( ( A Yrm  N )  x.  ( A Yrm  M ) ) ) )
5119msqsqrd 12918 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( sqr `  ( ( A ^
2 )  -  1 ) ) )  =  ( ( A ^
2 )  -  1 ) )
5241, 36mulcomd 9399 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Yrm  N )  x.  ( A Yrm  M ) )  =  ( ( A Yrm  M )  x.  ( A Yrm  N ) ) )
5351, 52oveq12d 6104 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( sqr `  ( ( A ^
2 )  -  1 ) ) )  x.  ( ( A Yrm  N )  x.  ( A Yrm  M ) ) )  =  ( ( ( A ^
2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm 
N ) ) ) )
5450, 53eqtrd 2470 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) )  =  ( ( ( A ^ 2 )  - 
1 )  x.  (
( A Yrm  M )  x.  ( A Yrm  N ) ) ) )
5554oveq2d 6102 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) ) )  =  ( ( ( A Xrm  M )  x.  ( A Xrm 
N ) )  +  ( ( ( A ^ 2 )  - 
1 )  x.  (
( A Yrm  M )  x.  ( A Yrm  N ) ) ) ) )
5632, 20, 41mul12d 9570 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  M )  x.  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( A Xrm  M )  x.  ( A Yrm 
N ) ) ) )
5739, 20, 36mul12d 9570 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  N )  x.  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( A Xrm  N )  x.  ( A Yrm 
M ) ) ) )
5856, 57oveq12d 6104 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Xrm  M )  x.  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) )  +  ( ( A Xrm  N )  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) ) )  =  ( ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  (
( A Xrm  M )  x.  ( A Yrm  N ) ) )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( ( A Xrm  N )  x.  ( A Yrm  M ) ) ) ) )
5932, 41mulcld 9398 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  M )  x.  ( A Yrm  N ) )  e.  CC )
6039, 36mulcld 9398 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  N )  x.  ( A Yrm  M ) )  e.  CC )
6120, 59, 60adddid 9402 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Xrm  M )  x.  ( A Yrm  N ) )  +  ( ( A Xrm  N )  x.  ( A Yrm  M ) ) ) )  =  ( ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( A Xrm  N )  x.  ( A Yrm 
M ) ) ) ) )
6259, 60addcomd 9563 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Xrm  M )  x.  ( A Yrm  N ) )  +  ( ( A Xrm  N )  x.  ( A Yrm 
M ) ) )  =  ( ( ( A Xrm  N )  x.  ( A Yrm 
M ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) )
6339, 36mulcomd 9399 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  N )  x.  ( A Yrm  M ) )  =  ( ( A Yrm  M )  x.  ( A Xrm  N ) ) )
6463oveq1d 6101 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Xrm  N )  x.  ( A Yrm  M ) )  +  ( ( A Xrm  M )  x.  ( A Yrm 
N ) ) )  =  ( ( ( A Yrm  M )  x.  ( A Xrm 
N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) )
6562, 64eqtrd 2470 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Xrm  M )  x.  ( A Yrm  N ) )  +  ( ( A Xrm  N )  x.  ( A Yrm 
M ) ) )  =  ( ( ( A Yrm  M )  x.  ( A Xrm 
N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) )
6665oveq2d 6102 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Xrm  M )  x.  ( A Yrm  N ) )  +  ( ( A Xrm  N )  x.  ( A Yrm  M ) ) ) )  =  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  (
( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm 
N ) ) ) ) )
6758, 61, 663eqtr2d 2476 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Xrm  M )  x.  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
N ) ) )  +  ( ( A Xrm  N )  x.  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) ) )
6855, 67oveq12d 6104 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  M ) ) ) )  +  ( ( ( A Xrm  M )  x.  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  N ) ) )  +  ( ( A Xrm  N )  x.  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm 
M ) ) ) ) )  =  ( ( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( A ^
2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm 
N ) ) ) )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  M )  x.  ( A Xrm 
N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) ) ) )
6928, 49, 683eqtr2d 2476 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ ( M  +  N ) )  =  ( ( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( A ^ 2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm  N ) ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) ) ) )
705, 69eqtrd 2470 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  ( M  +  N ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( M  +  N ) ) ) )  =  ( ( ( ( A Xrm  M )  x.  ( A Xrm 
N ) )  +  ( ( ( A ^ 2 )  - 
1 )  x.  (
( A Yrm  M )  x.  ( A Yrm  N ) ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) ) ) )
71 rmspecsqrnq 29218 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
72713ad2ant1 1009 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  ( CC  \  QQ ) )
73 nn0ssq 10953 . . . 4  |-  NN0  C_  QQ
7430, 1, 3fovrnd 6230 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Xrm  ( M  +  N
) )  e.  NN0 )
7573, 74sseldi 3349 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Xrm  ( M  +  N
) )  e.  QQ )
7634, 1, 3fovrnd 6230 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm  ( M  +  N
) )  e.  ZZ )
7712, 76sseldi 3349 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm  ( M  +  N
) )  e.  QQ )
7873, 31sseldi 3349 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Xrm 
M )  e.  QQ )
7973, 38sseldi 3349 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  QQ )
80 qmulcl 10963 . . . . 5  |-  ( ( ( A Xrm  M )  e.  QQ  /\  ( A Xrm  N )  e.  QQ )  ->  ( ( A Xrm  M )  x.  ( A Xrm  N ) )  e.  QQ )
8178, 79, 80syl2anc 661 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  M )  x.  ( A Xrm  N ) )  e.  QQ )
8212, 35sseldi 3349 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  e.  QQ )
8312, 40sseldi 3349 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  QQ )
84 qmulcl 10963 . . . . . 6  |-  ( ( ( A Yrm  M )  e.  QQ  /\  ( A Yrm  N )  e.  QQ )  ->  ( ( A Yrm  M )  x.  ( A Yrm  N ) )  e.  QQ )
8582, 83, 84syl2anc 661 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Yrm  M )  x.  ( A Yrm  N ) )  e.  QQ )
86 qmulcl 10963 . . . . 5  |-  ( ( ( ( A ^
2 )  -  1 )  e.  QQ  /\  ( ( A Yrm  M )  x.  ( A Yrm  N ) )  e.  QQ )  ->  ( ( ( A ^ 2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm  N ) ) )  e.  QQ )
8717, 85, 86syl2anc 661 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A ^
2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm 
N ) ) )  e.  QQ )
88 qaddcl 10961 . . . 4  |-  ( ( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  e.  QQ  /\  ( ( ( A ^ 2 )  - 
1 )  x.  (
( A Yrm  M )  x.  ( A Yrm  N ) ) )  e.  QQ )  ->  ( ( ( A Xrm  M )  x.  ( A Xrm 
N ) )  +  ( ( ( A ^ 2 )  - 
1 )  x.  (
( A Yrm  M )  x.  ( A Yrm  N ) ) ) )  e.  QQ )
8981, 87, 88syl2anc 661 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( A ^ 2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm  N ) ) ) )  e.  QQ )
90 qmulcl 10963 . . . . 5  |-  ( ( ( A Yrm  M )  e.  QQ  /\  ( A Xrm  N )  e.  QQ )  ->  ( ( A Yrm  M )  x.  ( A Xrm  N ) )  e.  QQ )
9182, 79, 90syl2anc 661 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Yrm  M )  x.  ( A Xrm  N ) )  e.  QQ )
92 qmulcl 10963 . . . . 5  |-  ( ( ( A Xrm  M )  e.  QQ  /\  ( A Yrm  N )  e.  QQ )  ->  ( ( A Xrm  M )  x.  ( A Yrm  N ) )  e.  QQ )
9378, 83, 92syl2anc 661 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  M )  x.  ( A Yrm  N ) )  e.  QQ )
94 qaddcl 10961 . . . 4  |-  ( ( ( ( A Yrm  M )  x.  ( A Xrm  N ) )  e.  QQ  /\  ( ( A Xrm  M )  x.  ( A Yrm  N ) )  e.  QQ )  ->  ( ( ( A Yrm  M )  x.  ( A Xrm 
N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) )  e.  QQ )
9591, 93, 94syl2anc 661 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm 
N ) ) )  e.  QQ )
96 qirropth 29220 . . 3  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( ( A Xrm  ( M  +  N ) )  e.  QQ  /\  ( A Yrm  ( M  +  N
) )  e.  QQ )  /\  ( ( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( A ^ 2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm  N ) ) ) )  e.  QQ  /\  ( ( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) )  e.  QQ ) )  -> 
( ( ( A Xrm  ( M  +  N ) )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( A Yrm  ( M  +  N ) ) ) )  =  ( ( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( A ^
2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm 
N ) ) ) )  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  M )  x.  ( A Xrm 
N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) ) )  <-> 
( ( A Xrm  ( M  +  N ) )  =  ( ( ( A Xrm  M )  x.  ( A Xrm 
N ) )  +  ( ( ( A ^ 2 )  - 
1 )  x.  (
( A Yrm  M )  x.  ( A Yrm  N ) ) ) )  /\  ( A Yrm  ( M  +  N
) )  =  ( ( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm 
N ) ) ) ) ) )
9772, 75, 77, 89, 95, 96syl122anc 1227 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( A Xrm  ( M  +  N ) )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( A Yrm  ( M  +  N
) ) ) )  =  ( ( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( A ^ 2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm  N ) ) ) )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( ( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) ) )  <->  ( ( A Xrm  ( M  +  N ) )  =  ( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( A ^ 2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm  N ) ) ) )  /\  ( A Yrm  ( M  +  N ) )  =  ( ( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) ) ) )
9870, 97mpbid 210 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( A Xrm  ( M  +  N ) )  =  ( ( ( A Xrm  M )  x.  ( A Xrm  N ) )  +  ( ( ( A ^
2 )  -  1 )  x.  ( ( A Yrm  M )  x.  ( A Yrm 
N ) ) ) )  /\  ( A Yrm  ( M  +  N ) )  =  ( ( ( A Yrm  M )  x.  ( A Xrm  N ) )  +  ( ( A Xrm  M )  x.  ( A Yrm  N ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601    \ cdif 3320    X. cxp 4833   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    - cmin 9587   2c2 10363   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   QQcq 10945   ^cexp 11857   sqrcsqr 12714   Xrm crmx 29212   Yrm crmy 29213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-omul 6917  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-acn 8104  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348  df-pi 13350  df-dvds 13528  df-gcd 13683  df-numer 13805  df-denom 13806  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-tx 19115  df-hmeo 19308  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-limc 21321  df-dv 21322  df-log 21988  df-squarenn 29153  df-pell1qr 29154  df-pell14qr 29155  df-pell1234qr 29156  df-pellfund 29157  df-rmx 29214  df-rmy 29215
This theorem is referenced by:  rmxadd  29239  rmyadd  29243
  Copyright terms: Public domain W3C validator