Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxfval Structured version   Unicode version

Theorem rmxfval 31002
Description: Value of the X sequence. Not used after rmxyval 31013 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxfval  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  =  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) ) )
Distinct variable groups:    A, b    N, b

Proof of Theorem rmxfval
Dummy variables  n  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6303 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
a ^ 2 )  =  ( A ^
2 ) )
21oveq1d 6311 . . . . . . . . . 10  |-  ( a  =  A  ->  (
( a ^ 2 )  -  1 )  =  ( ( A ^ 2 )  - 
1 ) )
32fveq2d 5876 . . . . . . . . 9  |-  ( a  =  A  ->  ( sqr `  ( ( a ^ 2 )  - 
1 ) )  =  ( sqr `  (
( A ^ 2 )  -  1 ) ) )
43oveq1d 6311 . . . . . . . 8  |-  ( a  =  A  ->  (
( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) )
54oveq2d 6312 . . . . . . 7  |-  ( a  =  A  ->  (
( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  =  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )
65mpteq2dv 4544 . . . . . 6  |-  ( a  =  A  ->  (
b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) )
76cnveqd 5188 . . . . 5  |-  ( a  =  A  ->  `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) )
87adantr 465 . . . 4  |-  ( ( a  =  A  /\  n  =  N )  ->  `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  =  `' ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) )
9 id 22 . . . . . 6  |-  ( a  =  A  ->  a  =  A )
109, 3oveq12d 6314 . . . . 5  |-  ( a  =  A  ->  (
a  +  ( sqr `  ( ( a ^
2 )  -  1 ) ) )  =  ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) )
11 id 22 . . . . 5  |-  ( n  =  N  ->  n  =  N )
1210, 11oveqan12d 6315 . . . 4  |-  ( ( a  =  A  /\  n  =  N )  ->  ( ( a  +  ( sqr `  (
( a ^ 2 )  -  1 ) ) ) ^ n
)  =  ( ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) ^ N ) )
138, 12fveq12d 5878 . . 3  |-  ( ( a  =  A  /\  n  =  N )  ->  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( a ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  (
( a  +  ( sqr `  ( ( a ^ 2 )  -  1 ) ) ) ^ n ) )  =  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) )
1413fveq2d 5876 . 2  |-  ( ( a  =  A  /\  n  =  N )  ->  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  ( ( a  +  ( sqr `  ( ( a ^
2 )  -  1 ) ) ) ^
n ) ) )  =  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  ( ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) ^ N ) ) ) )
15 df-rmx 31000 . 2  |- Xrm  =  (
a  e.  ( ZZ>= ` 
2 ) ,  n  e.  ZZ  |->  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  ( ( a  +  ( sqr `  ( ( a ^
2 )  -  1 ) ) ) ^
n ) ) ) )
16 fvex 5882 . 2  |-  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  (
( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ N ) ) )  e.  _V
1714, 15, 16ovmpt2a 6432 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  =  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    |-> cmpt 4515    X. cxp 5006   `'ccnv 5007   ` cfv 5594  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   1c1 9510    + caddc 9512    x. cmul 9514    - cmin 9824   2c2 10606   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   ^cexp 12168   sqrcsqrt 13077   Xrm crmx 30998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-rmx 31000
This theorem is referenced by:  rmxyval  31013
  Copyright terms: Public domain W3C validator