Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxdioph Structured version   Unicode version

Theorem rmxdioph 29536
Description: X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
rmxdioph  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  3 )  =  ( ( a `
 1 ) Xrm  ( a `
 2 ) ) ) }  e.  (Dioph `  3 )

Proof of Theorem rmxdioph
Dummy variables  b 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . . . 6  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  -> 
( a `  1
)  e.  ( ZZ>= ` 
2 ) )
2 elmapi 7347 . . . . . . . 8  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  a : ( 1 ... 3 ) --> NN0 )
3 df-3 10496 . . . . . . . . . 10  |-  3  =  ( 2  +  1 )
4 ssid 3486 . . . . . . . . . 10  |-  ( 1 ... 3 )  C_  ( 1 ... 3
)
53, 4jm2.27dlem5 29533 . . . . . . . . 9  |-  ( 1 ... 2 )  C_  ( 1 ... 3
)
6 2nn 10594 . . . . . . . . . 10  |-  2  e.  NN
76jm2.27dlem3 29531 . . . . . . . . 9  |-  2  e.  ( 1 ... 2
)
85, 7sselii 3464 . . . . . . . 8  |-  2  e.  ( 1 ... 3
)
9 ffvelrn 5953 . . . . . . . 8  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  2  e.  ( 1 ... 3 ) )  ->  ( a `  2 )  e. 
NN0 )
102, 8, 9sylancl 662 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  2 )  e.  NN0 )
1110adantr 465 . . . . . 6  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  -> 
( a `  2
)  e.  NN0 )
12 3nn 10595 . . . . . . . . 9  |-  3  e.  NN
1312jm2.27dlem3 29531 . . . . . . . 8  |-  3  e.  ( 1 ... 3
)
14 ffvelrn 5953 . . . . . . . 8  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  3  e.  ( 1 ... 3 ) )  ->  ( a `  3 )  e. 
NN0 )
152, 13, 14sylancl 662 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  3 )  e.  NN0 )
1615adantr 465 . . . . . 6  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  -> 
( a `  3
)  e.  NN0 )
17 rmxdiophlem 29535 . . . . . 6  |-  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN0  /\  ( a `
 3 )  e. 
NN0 )  ->  (
( a `  3
)  =  ( ( a `  1 ) Xrm  ( a `  2 ) )  <->  E. b  e.  NN0  ( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) ) )
181, 11, 16, 17syl3anc 1219 . . . . 5  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( a ` 
3 )  =  ( ( a `  1
) Xrm  ( a `  2
) )  <->  E. b  e.  NN0  ( b  =  ( ( a ` 
1 ) Yrm  ( a ` 
2 ) )  /\  ( ( ( a `
 3 ) ^
2 )  -  (
( ( ( a `
 1 ) ^
2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  1 ) ) )
1918pm5.32da 641 . . . 4  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) Xrm  ( a `  2 ) ) )  <->  ( (
a `  1 )  e.  ( ZZ>= `  2 )  /\  E. b  e.  NN0  ( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) ) ) )
20 anass 649 . . . . . 6  |-  ( ( ( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 )  <->  ( (
a `  1 )  e.  ( ZZ>= `  2 )  /\  ( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) ) )
2120rexbii 2862 . . . . 5  |-  ( E. b  e.  NN0  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 )  <->  E. b  e.  NN0  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) ) )
22 r19.42v 2981 . . . . 5  |-  ( E. b  e.  NN0  (
( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
b  =  ( ( a `  1 ) Yrm  ( a `  2 ) )  /\  ( ( ( a `  3
) ^ 2 )  -  ( ( ( ( a `  1
) ^ 2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  1 ) )  <->  ( (
a `  1 )  e.  ( ZZ>= `  2 )  /\  E. b  e.  NN0  ( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) ) )
2321, 22bitr2i 250 . . . 4  |-  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  E. b  e.  NN0  ( b  =  ( ( a `
 1 ) Yrm  ( a `
 2 ) )  /\  ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1 ) )  <->  E. b  e.  NN0  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  b  =  ( ( a ` 
1 ) Yrm  ( a ` 
2 ) ) )  /\  ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1 ) )
2419, 23syl6bb 261 . . 3  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) Xrm  ( a `  2 ) ) )  <->  E. b  e.  NN0  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  b  =  ( ( a ` 
1 ) Yrm  ( a ` 
2 ) ) )  /\  ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1 ) ) )
2524rabbiia 3067 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  3 )  =  ( ( a `
 1 ) Xrm  ( a `
 2 ) ) ) }  =  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  E. b  e.  NN0  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  b  =  (
( a `  1
) Yrm  ( a `  2
) ) )  /\  ( ( ( a `
 3 ) ^
2 )  -  (
( ( ( a `
 1 ) ^
2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  1 ) }
26 3nn0 10712 . . 3  |-  3  e.  NN0
27 vex 3081 . . . . . . . 8  |-  c  e. 
_V
2827resex 5261 . . . . . . 7  |-  ( c  |`  ( 1 ... 3
) )  e.  _V
29 fvex 5812 . . . . . . 7  |-  ( c `
 4 )  e. 
_V
30 df-2 10495 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
3130, 5jm2.27dlem5 29533 . . . . . . . . . . . . 13  |-  ( 1 ... 1 )  C_  ( 1 ... 3
)
32 1nn 10448 . . . . . . . . . . . . . 14  |-  1  e.  NN
3332jm2.27dlem3 29531 . . . . . . . . . . . . 13  |-  1  e.  ( 1 ... 1
)
3431, 33sselii 3464 . . . . . . . . . . . 12  |-  1  e.  ( 1 ... 3
)
3534jm2.27dlem1 29529 . . . . . . . . . . 11  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
a `  1 )  =  ( c ` 
1 ) )
3635eleq1d 2523 . . . . . . . . . 10  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
( a `  1
)  e.  ( ZZ>= ` 
2 )  <->  ( c `  1 )  e.  ( ZZ>= `  2 )
) )
3736adantr 465 . . . . . . . . 9  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  <->  ( c `  1 )  e.  ( ZZ>= `  2 )
) )
38 simpr 461 . . . . . . . . . 10  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
b  =  ( c `
 4 ) )
398jm2.27dlem1 29529 . . . . . . . . . . . 12  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
a `  2 )  =  ( c ` 
2 ) )
4035, 39oveq12d 6221 . . . . . . . . . . 11  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
( a `  1
) Yrm  ( a `  2
) )  =  ( ( c `  1
) Yrm  ( c `  2
) ) )
4140adantr 465 . . . . . . . . . 10  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( a ` 
1 ) Yrm  ( a ` 
2 ) )  =  ( ( c ` 
1 ) Yrm  ( c ` 
2 ) ) )
4238, 41eqeq12d 2476 . . . . . . . . 9  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  <->  ( c `  4 )  =  ( ( c ` 
1 ) Yrm  ( c ` 
2 ) ) ) )
4337, 42anbi12d 710 . . . . . . . 8  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  b  =  (
( a `  1
) Yrm  ( a `  2
) ) )  <->  ( (
c `  1 )  e.  ( ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) ) ) )
4413jm2.27dlem1 29529 . . . . . . . . . . . 12  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
a `  3 )  =  ( c ` 
3 ) )
4544oveq1d 6218 . . . . . . . . . . 11  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
( a `  3
) ^ 2 )  =  ( ( c `
 3 ) ^
2 ) )
4645adantr 465 . . . . . . . . . 10  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( a ` 
3 ) ^ 2 )  =  ( ( c `  3 ) ^ 2 ) )
4735oveq1d 6218 . . . . . . . . . . . 12  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
( a `  1
) ^ 2 )  =  ( ( c `
 1 ) ^
2 ) )
4847oveq1d 6218 . . . . . . . . . . 11  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
( ( a ` 
1 ) ^ 2 )  -  1 )  =  ( ( ( c `  1 ) ^ 2 )  - 
1 ) )
49 oveq1 6210 . . . . . . . . . . 11  |-  ( b  =  ( c ` 
4 )  ->  (
b ^ 2 )  =  ( ( c `
 4 ) ^
2 ) )
5048, 49oveqan12d 6222 . . . . . . . . . 10  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) )  =  ( ( ( ( c ` 
1 ) ^ 2 )  -  1 )  x.  ( ( c `
 4 ) ^
2 ) ) )
5146, 50oveq12d 6221 . . . . . . . . 9  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( ( a `
 3 ) ^
2 )  -  (
( ( ( a `
 1 ) ^
2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  ( ( ( c `  3
) ^ 2 )  -  ( ( ( ( c `  1
) ^ 2 )  -  1 )  x.  ( ( c ` 
4 ) ^ 2 ) ) ) )
5251eqeq1d 2456 . . . . . . . 8  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1  <-> 
( ( ( c `
 3 ) ^
2 )  -  (
( ( ( c `
 1 ) ^
2 )  -  1 )  x.  ( ( c `  4 ) ^ 2 ) ) )  =  1 ) )
5343, 52anbi12d 710 . . . . . . 7  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  b  =  ( ( a ` 
1 ) Yrm  ( a ` 
2 ) ) )  /\  ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1 )  <->  ( ( ( c `  1 )  e.  ( ZZ>= `  2
)  /\  ( c `  4 )  =  ( ( c ` 
1 ) Yrm  ( c ` 
2 ) ) )  /\  ( ( ( c `  3 ) ^ 2 )  -  ( ( ( ( c `  1 ) ^ 2 )  - 
1 )  x.  (
( c `  4
) ^ 2 ) ) )  =  1 ) ) )
5428, 29, 53sbc2ie 3370 . . . . . 6  |-  ( [. ( c  |`  (
1 ... 3 ) )  /  a ]. [. (
c `  4 )  /  b ]. (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 )  <->  ( (
( c `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
c `  4 )  =  ( ( c `
 1 ) Yrm  ( c `
 2 ) ) )  /\  ( ( ( c `  3
) ^ 2 )  -  ( ( ( ( c `  1
) ^ 2 )  -  1 )  x.  ( ( c ` 
4 ) ^ 2 ) ) )  =  1 ) )
5554a1i 11 . . . . 5  |-  ( c  e.  ( NN0  ^m  ( 1 ... 4
) )  ->  ( [. ( c  |`  (
1 ... 3 ) )  /  a ]. [. (
c `  4 )  /  b ]. (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 )  <->  ( (
( c `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
c `  4 )  =  ( ( c `
 1 ) Yrm  ( c `
 2 ) ) )  /\  ( ( ( c `  3
) ^ 2 )  -  ( ( ( ( c `  1
) ^ 2 )  -  1 )  x.  ( ( c ` 
4 ) ^ 2 ) ) )  =  1 ) ) )
5655rabbiia 3067 . . . 4  |-  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  [. ( c  |`  (
1 ... 3 ) )  /  a ]. [. (
c `  4 )  /  b ]. (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) }  =  { c  e.  ( NN0  ^m  (
1 ... 4 ) )  |  ( ( ( c `  1 )  e.  ( ZZ>= `  2
)  /\  ( c `  4 )  =  ( ( c ` 
1 ) Yrm  ( c ` 
2 ) ) )  /\  ( ( ( c `  3 ) ^ 2 )  -  ( ( ( ( c `  1 ) ^ 2 )  - 
1 )  x.  (
( c `  4
) ^ 2 ) ) )  =  1 ) }
57 4nn0 10713 . . . . . 6  |-  4  e.  NN0
58 rmydioph 29534 . . . . . 6  |-  { b  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( b `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
b `  3 )  =  ( ( b `
 1 ) Yrm  ( b `
 2 ) ) ) }  e.  (Dioph `  3 )
59 simp1 988 . . . . . . . . 9  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( b ` 
1 )  =  ( c `  1 ) )
6059eleq1d 2523 . . . . . . . 8  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( ( b `
 1 )  e.  ( ZZ>= `  2 )  <->  ( c `  1 )  e.  ( ZZ>= `  2
) ) )
61 simp3 990 . . . . . . . . 9  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( b ` 
3 )  =  ( c `  4 ) )
62 simp2 989 . . . . . . . . . 10  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( b ` 
2 )  =  ( c `  2 ) )
6359, 62oveq12d 6221 . . . . . . . . 9  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( ( b `
 1 ) Yrm  ( b `
 2 ) )  =  ( ( c `
 1 ) Yrm  ( c `
 2 ) ) )
6461, 63eqeq12d 2476 . . . . . . . 8  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( ( b `
 3 )  =  ( ( b ` 
1 ) Yrm  ( b ` 
2 ) )  <->  ( c `  4 )  =  ( ( c ` 
1 ) Yrm  ( c ` 
2 ) ) ) )
6560, 64anbi12d 710 . . . . . . 7  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( ( ( b `  1 )  e.  ( ZZ>= `  2
)  /\  ( b `  3 )  =  ( ( b ` 
1 ) Yrm  ( b ` 
2 ) ) )  <-> 
( ( c ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) ) ) )
66 df-4 10497 . . . . . . . . . . 11  |-  4  =  ( 3  +  1 )
67 ssid 3486 . . . . . . . . . . 11  |-  ( 1 ... 4 )  C_  ( 1 ... 4
)
6866, 67jm2.27dlem5 29533 . . . . . . . . . 10  |-  ( 1 ... 3 )  C_  ( 1 ... 4
)
693, 68jm2.27dlem5 29533 . . . . . . . . 9  |-  ( 1 ... 2 )  C_  ( 1 ... 4
)
7030, 69jm2.27dlem5 29533 . . . . . . . 8  |-  ( 1 ... 1 )  C_  ( 1 ... 4
)
7170, 33sselii 3464 . . . . . . 7  |-  1  e.  ( 1 ... 4
)
7269, 7sselii 3464 . . . . . . 7  |-  2  e.  ( 1 ... 4
)
73 4nn 10596 . . . . . . . 8  |-  4  e.  NN
7473jm2.27dlem3 29531 . . . . . . 7  |-  4  e.  ( 1 ... 4
)
7565, 71, 72, 74rabren3dioph 29325 . . . . . 6  |-  ( ( 4  e.  NN0  /\  { b  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( b ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( b `  3
)  =  ( ( b `  1 ) Yrm  ( b `  2 ) ) ) }  e.  (Dioph `  3 ) )  ->  { c  e.  ( NN0  ^m  (
1 ... 4 ) )  |  ( ( c `
 1 )  e.  ( ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) ) }  e.  (Dioph `  4 ) )
7657, 58, 75mp2an 672 . . . . 5  |-  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  ( ( c `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
c `  4 )  =  ( ( c `
 1 ) Yrm  ( c `
 2 ) ) ) }  e.  (Dioph `  4 )
77 ovex 6228 . . . . . . . . 9  |-  ( 1 ... 4 )  e. 
_V
7868, 13sselii 3464 . . . . . . . . 9  |-  3  e.  ( 1 ... 4
)
79 mzpproj 29244 . . . . . . . . 9  |-  ( ( ( 1 ... 4
)  e.  _V  /\  3  e.  ( 1 ... 4 ) )  ->  ( c  e.  ( ZZ  ^m  (
1 ... 4 ) ) 
|->  ( c `  3
) )  e.  (mzPoly `  ( 1 ... 4
) ) )
8077, 78, 79mp2an 672 . . . . . . . 8  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( c `
 3 ) )  e.  (mzPoly `  (
1 ... 4 ) )
81 2nn0 10711 . . . . . . . 8  |-  2  e.  NN0
82 mzpexpmpt 29252 . . . . . . . 8  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( c `  3
) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  2  e.  NN0 )  ->  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  ( ( c `  3
) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
8380, 81, 82mp2an 672 . . . . . . 7  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( c `  3 ) ^ 2 ) )  e.  (mzPoly `  (
1 ... 4 ) )
84 mzpproj 29244 . . . . . . . . . . 11  |-  ( ( ( 1 ... 4
)  e.  _V  /\  1  e.  ( 1 ... 4 ) )  ->  ( c  e.  ( ZZ  ^m  (
1 ... 4 ) ) 
|->  ( c `  1
) )  e.  (mzPoly `  ( 1 ... 4
) ) )
8577, 71, 84mp2an 672 . . . . . . . . . 10  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( c `
 1 ) )  e.  (mzPoly `  (
1 ... 4 ) )
86 mzpexpmpt 29252 . . . . . . . . . 10  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( c `  1
) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  2  e.  NN0 )  ->  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  ( ( c `  1
) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
8785, 81, 86mp2an 672 . . . . . . . . 9  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( c `  1 ) ^ 2 ) )  e.  (mzPoly `  (
1 ... 4 ) )
88 1z 10791 . . . . . . . . . 10  |-  1  e.  ZZ
89 mzpconstmpt 29247 . . . . . . . . . 10  |-  ( ( ( 1 ... 4
)  e.  _V  /\  1  e.  ZZ )  ->  ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  1 )  e.  (mzPoly `  ( 1 ... 4
) ) )
9077, 88, 89mp2an 672 . . . . . . . . 9  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  1 )  e.  (mzPoly `  (
1 ... 4 ) )
91 mzpsubmpt 29250 . . . . . . . . 9  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( c ` 
1 ) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 4
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( ( c `
 1 ) ^
2 )  -  1 ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
9287, 90, 91mp2an 672 . . . . . . . 8  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( ( c `  1
) ^ 2 )  -  1 ) )  e.  (mzPoly `  (
1 ... 4 ) )
93 mzpproj 29244 . . . . . . . . . 10  |-  ( ( ( 1 ... 4
)  e.  _V  /\  4  e.  ( 1 ... 4 ) )  ->  ( c  e.  ( ZZ  ^m  (
1 ... 4 ) ) 
|->  ( c `  4
) )  e.  (mzPoly `  ( 1 ... 4
) ) )
9477, 74, 93mp2an 672 . . . . . . . . 9  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( c `
 4 ) )  e.  (mzPoly `  (
1 ... 4 ) )
95 mzpexpmpt 29252 . . . . . . . . 9  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( c `  4
) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  2  e.  NN0 )  ->  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  ( ( c `  4
) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
9694, 81, 95mp2an 672 . . . . . . . 8  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( c `  4 ) ^ 2 ) )  e.  (mzPoly `  (
1 ... 4 ) )
97 mzpmulmpt 29249 . . . . . . . 8  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( ( c `
 1 ) ^
2 )  -  1 ) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  ( ( c `  4
) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( ( ( c `  1 ) ^ 2 )  - 
1 )  x.  (
( c `  4
) ^ 2 ) ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
9892, 96, 97mp2an 672 . . . . . . 7  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( ( ( c ` 
1 ) ^ 2 )  -  1 )  x.  ( ( c `
 4 ) ^
2 ) ) )  e.  (mzPoly `  (
1 ... 4 ) )
99 mzpsubmpt 29250 . . . . . . 7  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( c ` 
3 ) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  ( ( ( ( c `
 1 ) ^
2 )  -  1 )  x.  ( ( c `  4 ) ^ 2 ) ) )  e.  (mzPoly `  ( 1 ... 4
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( ( c `
 3 ) ^
2 )  -  (
( ( ( c `
 1 ) ^
2 )  -  1 )  x.  ( ( c `  4 ) ^ 2 ) ) ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
10083, 98, 99mp2an 672 . . . . . 6  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( ( c `  3
) ^ 2 )  -  ( ( ( ( c `  1
) ^ 2 )  -  1 )  x.  ( ( c ` 
4 ) ^ 2 ) ) ) )  e.  (mzPoly `  (
1 ... 4 ) )
101 eqrabdioph 29287 . . . . . 6  |-  ( ( 4  e.  NN0  /\  ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( ( c `
 3 ) ^
2 )  -  (
( ( ( c `
 1 ) ^
2 )  -  1 )  x.  ( ( c `  4 ) ^ 2 ) ) ) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 4
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... 4 ) )  |  ( ( ( c `  3 ) ^ 2 )  -  ( ( ( ( c `  1 ) ^ 2 )  - 
1 )  x.  (
( c `  4
) ^ 2 ) ) )  =  1 }  e.  (Dioph ` 
4 ) )
10257, 100, 90, 101mp3an 1315 . . . . 5  |-  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  ( ( ( c ` 
3 ) ^ 2 )  -  ( ( ( ( c ` 
1 ) ^ 2 )  -  1 )  x.  ( ( c `
 4 ) ^
2 ) ) )  =  1 }  e.  (Dioph `  4 )
103 anrabdioph 29290 . . . . 5  |-  ( ( { c  e.  ( NN0  ^m  ( 1 ... 4 ) )  |  ( ( c `
 1 )  e.  ( ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) ) }  e.  (Dioph `  4 )  /\  { c  e.  ( NN0 
^m  ( 1 ... 4 ) )  |  ( ( ( c `
 3 ) ^
2 )  -  (
( ( ( c `
 1 ) ^
2 )  -  1 )  x.  ( ( c `  4 ) ^ 2 ) ) )  =  1 }  e.  (Dioph `  4
) )  ->  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  ( ( ( c ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) )  /\  (
( ( c ` 
3 ) ^ 2 )  -  ( ( ( ( c ` 
1 ) ^ 2 )  -  1 )  x.  ( ( c `
 4 ) ^
2 ) ) )  =  1 ) }  e.  (Dioph `  4
) )
10476, 102, 103mp2an 672 . . . 4  |-  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  ( ( ( c ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) )  /\  (
( ( c ` 
3 ) ^ 2 )  -  ( ( ( ( c ` 
1 ) ^ 2 )  -  1 )  x.  ( ( c `
 4 ) ^
2 ) ) )  =  1 ) }  e.  (Dioph `  4
)
10556, 104eqeltri 2538 . . 3  |-  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  [. ( c  |`  (
1 ... 3 ) )  /  a ]. [. (
c `  4 )  /  b ]. (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) }  e.  (Dioph `  4
)
10666rexfrabdioph 29304 . . 3  |-  ( ( 3  e.  NN0  /\  { c  e.  ( NN0 
^m  ( 1 ... 4 ) )  | 
[. ( c  |`  ( 1 ... 3
) )  /  a ]. [. ( c ` 
4 )  /  b ]. ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  b  =  (
( a `  1
) Yrm  ( a `  2
) ) )  /\  ( ( ( a `
 3 ) ^
2 )  -  (
( ( ( a `
 1 ) ^
2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  1 ) }  e.  (Dioph ` 
4 ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  E. b  e. 
NN0  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  b  =  ( ( a ` 
1 ) Yrm  ( a ` 
2 ) ) )  /\  ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1 ) }  e.  (Dioph `  3 ) )
10726, 105, 106mp2an 672 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  E. b  e.  NN0  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  b  =  ( ( a `
 1 ) Yrm  ( a `
 2 ) ) )  /\  ( ( ( a `  3
) ^ 2 )  -  ( ( ( ( a `  1
) ^ 2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  1 ) }  e.  (Dioph `  3 )
10825, 107eqeltri 2538 1  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  3 )  =  ( ( a `
 1 ) Xrm  ( a `
 2 ) ) ) }  e.  (Dioph `  3 )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E.wrex 2800   {crab 2803   _Vcvv 3078   [.wsbc 3294    |-> cmpt 4461    |` cres 4953   -->wf 5525   ` cfv 5529  (class class class)co 6203    ^m cmap 7327   1c1 9398    x. cmul 9402    - cmin 9710   2c2 10486   3c3 10487   4c4 10488   NN0cn0 10694   ZZcz 10761   ZZ>=cuz 10976   ...cfz 11558   ^cexp 11986  mzPolycmzp 29229  Diophcdioph 29264   Xrm crmx 29412   Yrm crmy 29413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7962  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475  ax-addf 9476  ax-mulf 9477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-omul 7038  df-er 7214  df-map 7329  df-pm 7330  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-fi 7776  df-sup 7806  df-oi 7839  df-card 8224  df-acn 8227  df-cda 8452  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-3 10496  df-4 10497  df-5 10498  df-6 10499  df-7 10500  df-8 10501  df-9 10502  df-10 10503  df-n0 10695  df-z 10762  df-dec 10871  df-uz 10977  df-q 11069  df-rp 11107  df-xneg 11204  df-xadd 11205  df-xmul 11206  df-ioo 11419  df-ioc 11420  df-ico 11421  df-icc 11422  df-fz 11559  df-fzo 11670  df-fl 11763  df-mod 11830  df-seq 11928  df-exp 11987  df-fac 12173  df-bc 12200  df-hash 12225  df-shft 12678  df-cj 12710  df-re 12711  df-im 12712  df-sqr 12846  df-abs 12847  df-limsup 13071  df-clim 13088  df-rlim 13089  df-sum 13286  df-ef 13475  df-sin 13477  df-cos 13478  df-pi 13480  df-dvds 13658  df-gcd 13813  df-prm 13886  df-numer 13935  df-denom 13936  df-struct 14298  df-ndx 14299  df-slot 14300  df-base 14301  df-sets 14302  df-ress 14303  df-plusg 14374  df-mulr 14375  df-starv 14376  df-sca 14377  df-vsca 14378  df-ip 14379  df-tset 14380  df-ple 14381  df-ds 14383  df-unif 14384  df-hom 14385  df-cco 14386  df-rest 14484  df-topn 14485  df-0g 14503  df-gsum 14504  df-topgen 14505  df-pt 14506  df-prds 14509  df-xrs 14563  df-qtop 14568  df-imas 14569  df-xps 14571  df-mre 14647  df-mrc 14648  df-acs 14650  df-mnd 15538  df-submnd 15588  df-mulg 15671  df-cntz 15958  df-cmn 16404  df-psmet 17944  df-xmet 17945  df-met 17946  df-bl 17947  df-mopn 17948  df-fbas 17949  df-fg 17950  df-cnfld 17954  df-top 18645  df-bases 18647  df-topon 18648  df-topsp 18649  df-cld 18765  df-ntr 18766  df-cls 18767  df-nei 18844  df-lp 18882  df-perf 18883  df-cn 18973  df-cnp 18974  df-haus 19061  df-tx 19277  df-hmeo 19470  df-fil 19561  df-fm 19653  df-flim 19654  df-flf 19655  df-xms 20037  df-ms 20038  df-tms 20039  df-cncf 20596  df-limc 21484  df-dv 21485  df-log 22151  df-mzpcl 29230  df-mzp 29231  df-dioph 29265  df-squarenn 29353  df-pell1qr 29354  df-pell14qr 29355  df-pell1234qr 29356  df-pellfund 29357  df-rmx 29414  df-rmy 29415
This theorem is referenced by:  expdiophlem2  29542
  Copyright terms: Public domain W3C validator