Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxdioph Structured version   Unicode version

Theorem rmxdioph 30926
Description: X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
rmxdioph  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  3 )  =  ( ( a `
 1 ) Xrm  ( a `
 2 ) ) ) }  e.  (Dioph `  3 )

Proof of Theorem rmxdioph
Dummy variables  b 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . . . 6  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  -> 
( a `  1
)  e.  ( ZZ>= ` 
2 ) )
2 elmapi 7438 . . . . . . . 8  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  a : ( 1 ... 3 ) --> NN0 )
3 df-3 10596 . . . . . . . . . 10  |-  3  =  ( 2  +  1 )
4 ssid 3505 . . . . . . . . . 10  |-  ( 1 ... 3 )  C_  ( 1 ... 3
)
53, 4jm2.27dlem5 30923 . . . . . . . . 9  |-  ( 1 ... 2 )  C_  ( 1 ... 3
)
6 2nn 10694 . . . . . . . . . 10  |-  2  e.  NN
76jm2.27dlem3 30921 . . . . . . . . 9  |-  2  e.  ( 1 ... 2
)
85, 7sselii 3483 . . . . . . . 8  |-  2  e.  ( 1 ... 3
)
9 ffvelrn 6010 . . . . . . . 8  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  2  e.  ( 1 ... 3 ) )  ->  ( a `  2 )  e. 
NN0 )
102, 8, 9sylancl 662 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  2 )  e.  NN0 )
1110adantr 465 . . . . . 6  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  -> 
( a `  2
)  e.  NN0 )
12 3nn 10695 . . . . . . . . 9  |-  3  e.  NN
1312jm2.27dlem3 30921 . . . . . . . 8  |-  3  e.  ( 1 ... 3
)
14 ffvelrn 6010 . . . . . . . 8  |-  ( ( a : ( 1 ... 3 ) --> NN0 
/\  3  e.  ( 1 ... 3 ) )  ->  ( a `  3 )  e. 
NN0 )
152, 13, 14sylancl 662 . . . . . . 7  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
a `  3 )  e.  NN0 )
1615adantr 465 . . . . . 6  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  -> 
( a `  3
)  e.  NN0 )
17 rmxdiophlem 30925 . . . . . 6  |-  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  2 )  e.  NN0  /\  ( a `
 3 )  e. 
NN0 )  ->  (
( a `  3
)  =  ( ( a `  1 ) Xrm  ( a `  2 ) )  <->  E. b  e.  NN0  ( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) ) )
181, 11, 16, 17syl3anc 1227 . . . . 5  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... 3 ) )  /\  ( a `  1
)  e.  ( ZZ>= ` 
2 ) )  -> 
( ( a ` 
3 )  =  ( ( a `  1
) Xrm  ( a `  2
) )  <->  E. b  e.  NN0  ( b  =  ( ( a ` 
1 ) Yrm  ( a ` 
2 ) )  /\  ( ( ( a `
 3 ) ^
2 )  -  (
( ( ( a `
 1 ) ^
2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  1 ) ) )
1918pm5.32da 641 . . . 4  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) Xrm  ( a `  2 ) ) )  <->  ( (
a `  1 )  e.  ( ZZ>= `  2 )  /\  E. b  e.  NN0  ( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) ) ) )
20 anass 649 . . . . . 6  |-  ( ( ( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 )  <->  ( (
a `  1 )  e.  ( ZZ>= `  2 )  /\  ( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) ) )
2120rexbii 2943 . . . . 5  |-  ( E. b  e.  NN0  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 )  <->  E. b  e.  NN0  ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  ( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) ) )
22 r19.42v 2996 . . . . 5  |-  ( E. b  e.  NN0  (
( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
b  =  ( ( a `  1 ) Yrm  ( a `  2 ) )  /\  ( ( ( a `  3
) ^ 2 )  -  ( ( ( ( a `  1
) ^ 2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  1 ) )  <->  ( (
a `  1 )  e.  ( ZZ>= `  2 )  /\  E. b  e.  NN0  ( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) ) )
2321, 22bitr2i 250 . . . 4  |-  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  E. b  e.  NN0  ( b  =  ( ( a `
 1 ) Yrm  ( a `
 2 ) )  /\  ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1 ) )  <->  E. b  e.  NN0  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  b  =  ( ( a ` 
1 ) Yrm  ( a ` 
2 ) ) )  /\  ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1 ) )
2419, 23syl6bb 261 . . 3  |-  ( a  e.  ( NN0  ^m  ( 1 ... 3
) )  ->  (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( a `  3
)  =  ( ( a `  1 ) Xrm  ( a `  2 ) ) )  <->  E. b  e.  NN0  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  b  =  ( ( a ` 
1 ) Yrm  ( a ` 
2 ) ) )  /\  ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1 ) ) )
2524rabbiia 3082 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  3 )  =  ( ( a `
 1 ) Xrm  ( a `
 2 ) ) ) }  =  {
a  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  E. b  e.  NN0  ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  b  =  (
( a `  1
) Yrm  ( a `  2
) ) )  /\  ( ( ( a `
 3 ) ^
2 )  -  (
( ( ( a `
 1 ) ^
2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  1 ) }
26 3nn0 10814 . . 3  |-  3  e.  NN0
27 vex 3096 . . . . . . . 8  |-  c  e. 
_V
2827resex 5303 . . . . . . 7  |-  ( c  |`  ( 1 ... 3
) )  e.  _V
29 fvex 5862 . . . . . . 7  |-  ( c `
 4 )  e. 
_V
30 df-2 10595 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
3130, 5jm2.27dlem5 30923 . . . . . . . . . . . . 13  |-  ( 1 ... 1 )  C_  ( 1 ... 3
)
32 1nn 10548 . . . . . . . . . . . . . 14  |-  1  e.  NN
3332jm2.27dlem3 30921 . . . . . . . . . . . . 13  |-  1  e.  ( 1 ... 1
)
3431, 33sselii 3483 . . . . . . . . . . . 12  |-  1  e.  ( 1 ... 3
)
3534jm2.27dlem1 30919 . . . . . . . . . . 11  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
a `  1 )  =  ( c ` 
1 ) )
3635eleq1d 2510 . . . . . . . . . 10  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
( a `  1
)  e.  ( ZZ>= ` 
2 )  <->  ( c `  1 )  e.  ( ZZ>= `  2 )
) )
3736adantr 465 . . . . . . . . 9  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  <->  ( c `  1 )  e.  ( ZZ>= `  2 )
) )
38 simpr 461 . . . . . . . . . 10  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
b  =  ( c `
 4 ) )
398jm2.27dlem1 30919 . . . . . . . . . . . 12  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
a `  2 )  =  ( c ` 
2 ) )
4035, 39oveq12d 6295 . . . . . . . . . . 11  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
( a `  1
) Yrm  ( a `  2
) )  =  ( ( c `  1
) Yrm  ( c `  2
) ) )
4140adantr 465 . . . . . . . . . 10  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( a ` 
1 ) Yrm  ( a ` 
2 ) )  =  ( ( c ` 
1 ) Yrm  ( c ` 
2 ) ) )
4238, 41eqeq12d 2463 . . . . . . . . 9  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( b  =  ( ( a `  1
) Yrm  ( a `  2
) )  <->  ( c `  4 )  =  ( ( c ` 
1 ) Yrm  ( c ` 
2 ) ) ) )
4337, 42anbi12d 710 . . . . . . . 8  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  b  =  (
( a `  1
) Yrm  ( a `  2
) ) )  <->  ( (
c `  1 )  e.  ( ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) ) ) )
4413jm2.27dlem1 30919 . . . . . . . . . . . 12  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
a `  3 )  =  ( c ` 
3 ) )
4544oveq1d 6292 . . . . . . . . . . 11  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
( a `  3
) ^ 2 )  =  ( ( c `
 3 ) ^
2 ) )
4645adantr 465 . . . . . . . . . 10  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( a ` 
3 ) ^ 2 )  =  ( ( c `  3 ) ^ 2 ) )
4735oveq1d 6292 . . . . . . . . . . . 12  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
( a `  1
) ^ 2 )  =  ( ( c `
 1 ) ^
2 ) )
4847oveq1d 6292 . . . . . . . . . . 11  |-  ( a  =  ( c  |`  ( 1 ... 3
) )  ->  (
( ( a ` 
1 ) ^ 2 )  -  1 )  =  ( ( ( c `  1 ) ^ 2 )  - 
1 ) )
49 oveq1 6284 . . . . . . . . . . 11  |-  ( b  =  ( c ` 
4 )  ->  (
b ^ 2 )  =  ( ( c `
 4 ) ^
2 ) )
5048, 49oveqan12d 6296 . . . . . . . . . 10  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) )  =  ( ( ( ( c ` 
1 ) ^ 2 )  -  1 )  x.  ( ( c `
 4 ) ^
2 ) ) )
5146, 50oveq12d 6295 . . . . . . . . 9  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( ( a `
 3 ) ^
2 )  -  (
( ( ( a `
 1 ) ^
2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  ( ( ( c `  3
) ^ 2 )  -  ( ( ( ( c `  1
) ^ 2 )  -  1 )  x.  ( ( c ` 
4 ) ^ 2 ) ) ) )
5251eqeq1d 2443 . . . . . . . 8  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1  <-> 
( ( ( c `
 3 ) ^
2 )  -  (
( ( ( c `
 1 ) ^
2 )  -  1 )  x.  ( ( c `  4 ) ^ 2 ) ) )  =  1 ) )
5343, 52anbi12d 710 . . . . . . 7  |-  ( ( a  =  ( c  |`  ( 1 ... 3
) )  /\  b  =  ( c ` 
4 ) )  -> 
( ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  b  =  ( ( a ` 
1 ) Yrm  ( a ` 
2 ) ) )  /\  ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1 )  <->  ( ( ( c `  1 )  e.  ( ZZ>= `  2
)  /\  ( c `  4 )  =  ( ( c ` 
1 ) Yrm  ( c ` 
2 ) ) )  /\  ( ( ( c `  3 ) ^ 2 )  -  ( ( ( ( c `  1 ) ^ 2 )  - 
1 )  x.  (
( c `  4
) ^ 2 ) ) )  =  1 ) ) )
5428, 29, 53sbc2ie 3387 . . . . . 6  |-  ( [. ( c  |`  (
1 ... 3 ) )  /  a ]. [. (
c `  4 )  /  b ]. (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 )  <->  ( (
( c `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
c `  4 )  =  ( ( c `
 1 ) Yrm  ( c `
 2 ) ) )  /\  ( ( ( c `  3
) ^ 2 )  -  ( ( ( ( c `  1
) ^ 2 )  -  1 )  x.  ( ( c ` 
4 ) ^ 2 ) ) )  =  1 ) )
5554a1i 11 . . . . 5  |-  ( c  e.  ( NN0  ^m  ( 1 ... 4
) )  ->  ( [. ( c  |`  (
1 ... 3 ) )  /  a ]. [. (
c `  4 )  /  b ]. (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 )  <->  ( (
( c `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
c `  4 )  =  ( ( c `
 1 ) Yrm  ( c `
 2 ) ) )  /\  ( ( ( c `  3
) ^ 2 )  -  ( ( ( ( c `  1
) ^ 2 )  -  1 )  x.  ( ( c ` 
4 ) ^ 2 ) ) )  =  1 ) ) )
5655rabbiia 3082 . . . 4  |-  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  [. ( c  |`  (
1 ... 3 ) )  /  a ]. [. (
c `  4 )  /  b ]. (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) }  =  { c  e.  ( NN0  ^m  (
1 ... 4 ) )  |  ( ( ( c `  1 )  e.  ( ZZ>= `  2
)  /\  ( c `  4 )  =  ( ( c ` 
1 ) Yrm  ( c ` 
2 ) ) )  /\  ( ( ( c `  3 ) ^ 2 )  -  ( ( ( ( c `  1 ) ^ 2 )  - 
1 )  x.  (
( c `  4
) ^ 2 ) ) )  =  1 ) }
57 4nn0 10815 . . . . . 6  |-  4  e.  NN0
58 rmydioph 30924 . . . . . 6  |-  { b  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( b `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
b `  3 )  =  ( ( b `
 1 ) Yrm  ( b `
 2 ) ) ) }  e.  (Dioph `  3 )
59 simp1 995 . . . . . . . . 9  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( b ` 
1 )  =  ( c `  1 ) )
6059eleq1d 2510 . . . . . . . 8  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( ( b `
 1 )  e.  ( ZZ>= `  2 )  <->  ( c `  1 )  e.  ( ZZ>= `  2
) ) )
61 simp3 997 . . . . . . . . 9  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( b ` 
3 )  =  ( c `  4 ) )
62 simp2 996 . . . . . . . . . 10  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( b ` 
2 )  =  ( c `  2 ) )
6359, 62oveq12d 6295 . . . . . . . . 9  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( ( b `
 1 ) Yrm  ( b `
 2 ) )  =  ( ( c `
 1 ) Yrm  ( c `
 2 ) ) )
6461, 63eqeq12d 2463 . . . . . . . 8  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( ( b `
 3 )  =  ( ( b ` 
1 ) Yrm  ( b ` 
2 ) )  <->  ( c `  4 )  =  ( ( c ` 
1 ) Yrm  ( c ` 
2 ) ) ) )
6560, 64anbi12d 710 . . . . . . 7  |-  ( ( ( b `  1
)  =  ( c `
 1 )  /\  ( b `  2
)  =  ( c `
 2 )  /\  ( b `  3
)  =  ( c `
 4 ) )  ->  ( ( ( b `  1 )  e.  ( ZZ>= `  2
)  /\  ( b `  3 )  =  ( ( b ` 
1 ) Yrm  ( b ` 
2 ) ) )  <-> 
( ( c ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) ) ) )
66 df-4 10597 . . . . . . . . . . 11  |-  4  =  ( 3  +  1 )
67 ssid 3505 . . . . . . . . . . 11  |-  ( 1 ... 4 )  C_  ( 1 ... 4
)
6866, 67jm2.27dlem5 30923 . . . . . . . . . 10  |-  ( 1 ... 3 )  C_  ( 1 ... 4
)
693, 68jm2.27dlem5 30923 . . . . . . . . 9  |-  ( 1 ... 2 )  C_  ( 1 ... 4
)
7030, 69jm2.27dlem5 30923 . . . . . . . 8  |-  ( 1 ... 1 )  C_  ( 1 ... 4
)
7170, 33sselii 3483 . . . . . . 7  |-  1  e.  ( 1 ... 4
)
7269, 7sselii 3483 . . . . . . 7  |-  2  e.  ( 1 ... 4
)
73 4nn 10696 . . . . . . . 8  |-  4  e.  NN
7473jm2.27dlem3 30921 . . . . . . 7  |-  4  e.  ( 1 ... 4
)
7565, 71, 72, 74rabren3dioph 30717 . . . . . 6  |-  ( ( 4  e.  NN0  /\  { b  e.  ( NN0 
^m  ( 1 ... 3 ) )  |  ( ( b ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( b `  3
)  =  ( ( b `  1 ) Yrm  ( b `  2 ) ) ) }  e.  (Dioph `  3 ) )  ->  { c  e.  ( NN0  ^m  (
1 ... 4 ) )  |  ( ( c `
 1 )  e.  ( ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) ) }  e.  (Dioph `  4 ) )
7657, 58, 75mp2an 672 . . . . 5  |-  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  ( ( c `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
c `  4 )  =  ( ( c `
 1 ) Yrm  ( c `
 2 ) ) ) }  e.  (Dioph `  4 )
77 ovex 6305 . . . . . . . . 9  |-  ( 1 ... 4 )  e. 
_V
7868, 13sselii 3483 . . . . . . . . 9  |-  3  e.  ( 1 ... 4
)
79 mzpproj 30637 . . . . . . . . 9  |-  ( ( ( 1 ... 4
)  e.  _V  /\  3  e.  ( 1 ... 4 ) )  ->  ( c  e.  ( ZZ  ^m  (
1 ... 4 ) ) 
|->  ( c `  3
) )  e.  (mzPoly `  ( 1 ... 4
) ) )
8077, 78, 79mp2an 672 . . . . . . . 8  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( c `
 3 ) )  e.  (mzPoly `  (
1 ... 4 ) )
81 2nn0 10813 . . . . . . . 8  |-  2  e.  NN0
82 mzpexpmpt 30645 . . . . . . . 8  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( c `  3
) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  2  e.  NN0 )  ->  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  ( ( c `  3
) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
8380, 81, 82mp2an 672 . . . . . . 7  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( c `  3 ) ^ 2 ) )  e.  (mzPoly `  (
1 ... 4 ) )
84 mzpproj 30637 . . . . . . . . . . 11  |-  ( ( ( 1 ... 4
)  e.  _V  /\  1  e.  ( 1 ... 4 ) )  ->  ( c  e.  ( ZZ  ^m  (
1 ... 4 ) ) 
|->  ( c `  1
) )  e.  (mzPoly `  ( 1 ... 4
) ) )
8577, 71, 84mp2an 672 . . . . . . . . . 10  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( c `
 1 ) )  e.  (mzPoly `  (
1 ... 4 ) )
86 mzpexpmpt 30645 . . . . . . . . . 10  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( c `  1
) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  2  e.  NN0 )  ->  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  ( ( c `  1
) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
8785, 81, 86mp2an 672 . . . . . . . . 9  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( c `  1 ) ^ 2 ) )  e.  (mzPoly `  (
1 ... 4 ) )
88 1z 10895 . . . . . . . . . 10  |-  1  e.  ZZ
89 mzpconstmpt 30640 . . . . . . . . . 10  |-  ( ( ( 1 ... 4
)  e.  _V  /\  1  e.  ZZ )  ->  ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  1 )  e.  (mzPoly `  ( 1 ... 4
) ) )
9077, 88, 89mp2an 672 . . . . . . . . 9  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  1 )  e.  (mzPoly `  (
1 ... 4 ) )
91 mzpsubmpt 30643 . . . . . . . . 9  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( c ` 
1 ) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 4
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( ( c `
 1 ) ^
2 )  -  1 ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
9287, 90, 91mp2an 672 . . . . . . . 8  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( ( c `  1
) ^ 2 )  -  1 ) )  e.  (mzPoly `  (
1 ... 4 ) )
93 mzpproj 30637 . . . . . . . . . 10  |-  ( ( ( 1 ... 4
)  e.  _V  /\  4  e.  ( 1 ... 4 ) )  ->  ( c  e.  ( ZZ  ^m  (
1 ... 4 ) ) 
|->  ( c `  4
) )  e.  (mzPoly `  ( 1 ... 4
) ) )
9477, 74, 93mp2an 672 . . . . . . . . 9  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( c `
 4 ) )  e.  (mzPoly `  (
1 ... 4 ) )
95 mzpexpmpt 30645 . . . . . . . . 9  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( c `  4
) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  2  e.  NN0 )  ->  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  ( ( c `  4
) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
9694, 81, 95mp2an 672 . . . . . . . 8  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( c `  4 ) ^ 2 ) )  e.  (mzPoly `  (
1 ... 4 ) )
97 mzpmulmpt 30642 . . . . . . . 8  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( ( c `
 1 ) ^
2 )  -  1 ) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  ( ( c `  4
) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( ( ( c `  1 ) ^ 2 )  - 
1 )  x.  (
( c `  4
) ^ 2 ) ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
9892, 96, 97mp2an 672 . . . . . . 7  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( ( ( c ` 
1 ) ^ 2 )  -  1 )  x.  ( ( c `
 4 ) ^
2 ) ) )  e.  (mzPoly `  (
1 ... 4 ) )
99 mzpsubmpt 30643 . . . . . . 7  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( c ` 
3 ) ^ 2 ) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  ( ( ( ( c `
 1 ) ^
2 )  -  1 )  x.  ( ( c `  4 ) ^ 2 ) ) )  e.  (mzPoly `  ( 1 ... 4
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( ( c `
 3 ) ^
2 )  -  (
( ( ( c `
 1 ) ^
2 )  -  1 )  x.  ( ( c `  4 ) ^ 2 ) ) ) )  e.  (mzPoly `  ( 1 ... 4
) ) )
10083, 98, 99mp2an 672 . . . . . 6  |-  ( c  e.  ( ZZ  ^m  ( 1 ... 4
) )  |->  ( ( ( c `  3
) ^ 2 )  -  ( ( ( ( c `  1
) ^ 2 )  -  1 )  x.  ( ( c ` 
4 ) ^ 2 ) ) ) )  e.  (mzPoly `  (
1 ... 4 ) )
101 eqrabdioph 30679 . . . . . 6  |-  ( ( 4  e.  NN0  /\  ( c  e.  ( ZZ  ^m  ( 1 ... 4 ) ) 
|->  ( ( ( c `
 3 ) ^
2 )  -  (
( ( ( c `
 1 ) ^
2 )  -  1 )  x.  ( ( c `  4 ) ^ 2 ) ) ) )  e.  (mzPoly `  ( 1 ... 4
) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... 4 ) )  |->  1 )  e.  (mzPoly `  ( 1 ... 4
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... 4 ) )  |  ( ( ( c `  3 ) ^ 2 )  -  ( ( ( ( c `  1 ) ^ 2 )  - 
1 )  x.  (
( c `  4
) ^ 2 ) ) )  =  1 }  e.  (Dioph ` 
4 ) )
10257, 100, 90, 101mp3an 1323 . . . . 5  |-  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  ( ( ( c ` 
3 ) ^ 2 )  -  ( ( ( ( c ` 
1 ) ^ 2 )  -  1 )  x.  ( ( c `
 4 ) ^
2 ) ) )  =  1 }  e.  (Dioph `  4 )
103 anrabdioph 30682 . . . . 5  |-  ( ( { c  e.  ( NN0  ^m  ( 1 ... 4 ) )  |  ( ( c `
 1 )  e.  ( ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) ) }  e.  (Dioph `  4 )  /\  { c  e.  ( NN0 
^m  ( 1 ... 4 ) )  |  ( ( ( c `
 3 ) ^
2 )  -  (
( ( ( c `
 1 ) ^
2 )  -  1 )  x.  ( ( c `  4 ) ^ 2 ) ) )  =  1 }  e.  (Dioph `  4
) )  ->  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  ( ( ( c ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) )  /\  (
( ( c ` 
3 ) ^ 2 )  -  ( ( ( ( c ` 
1 ) ^ 2 )  -  1 )  x.  ( ( c `
 4 ) ^
2 ) ) )  =  1 ) }  e.  (Dioph `  4
) )
10476, 102, 103mp2an 672 . . . 4  |-  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  ( ( ( c ` 
1 )  e.  (
ZZ>= `  2 )  /\  ( c `  4
)  =  ( ( c `  1 ) Yrm  ( c `  2 ) ) )  /\  (
( ( c ` 
3 ) ^ 2 )  -  ( ( ( ( c ` 
1 ) ^ 2 )  -  1 )  x.  ( ( c `
 4 ) ^
2 ) ) )  =  1 ) }  e.  (Dioph `  4
)
10556, 104eqeltri 2525 . . 3  |-  { c  e.  ( NN0  ^m  ( 1 ... 4
) )  |  [. ( c  |`  (
1 ... 3 ) )  /  a ]. [. (
c `  4 )  /  b ]. (
( ( a ` 
1 )  e.  (
ZZ>= `  2 )  /\  b  =  ( (
a `  1 ) Yrm  ( a `  2 ) ) )  /\  (
( ( a ` 
3 ) ^ 2 )  -  ( ( ( ( a ` 
1 ) ^ 2 )  -  1 )  x.  ( b ^
2 ) ) )  =  1 ) }  e.  (Dioph `  4
)
10666rexfrabdioph 30696 . . 3  |-  ( ( 3  e.  NN0  /\  { c  e.  ( NN0 
^m  ( 1 ... 4 ) )  | 
[. ( c  |`  ( 1 ... 3
) )  /  a ]. [. ( c ` 
4 )  /  b ]. ( ( ( a `
 1 )  e.  ( ZZ>= `  2 )  /\  b  =  (
( a `  1
) Yrm  ( a `  2
) ) )  /\  ( ( ( a `
 3 ) ^
2 )  -  (
( ( ( a `
 1 ) ^
2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  1 ) }  e.  (Dioph ` 
4 ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... 3 ) )  |  E. b  e. 
NN0  ( ( ( a `  1 )  e.  ( ZZ>= `  2
)  /\  b  =  ( ( a ` 
1 ) Yrm  ( a ` 
2 ) ) )  /\  ( ( ( a `  3 ) ^ 2 )  -  ( ( ( ( a `  1 ) ^ 2 )  - 
1 )  x.  (
b ^ 2 ) ) )  =  1 ) }  e.  (Dioph `  3 ) )
10726, 105, 106mp2an 672 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  E. b  e.  NN0  ( ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  b  =  ( ( a `
 1 ) Yrm  ( a `
 2 ) ) )  /\  ( ( ( a `  3
) ^ 2 )  -  ( ( ( ( a `  1
) ^ 2 )  -  1 )  x.  ( b ^ 2 ) ) )  =  1 ) }  e.  (Dioph `  3 )
10825, 107eqeltri 2525 1  |-  { a  e.  ( NN0  ^m  ( 1 ... 3
) )  |  ( ( a `  1
)  e.  ( ZZ>= ` 
2 )  /\  (
a `  3 )  =  ( ( a `
 1 ) Xrm  ( a `
 2 ) ) ) }  e.  (Dioph `  3 )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   E.wrex 2792   {crab 2795   _Vcvv 3093   [.wsbc 3311    |-> cmpt 4491    |` cres 4987   -->wf 5570   ` cfv 5574  (class class class)co 6277    ^m cmap 7418   1c1 9491    x. cmul 9495    - cmin 9805   2c2 10586   3c3 10587   4c4 10588   NN0cn0 10796   ZZcz 10865   ZZ>=cuz 11085   ...cfz 11676   ^cexp 12140  mzPolycmzp 30622  Diophcdioph 30656   Xrm crmx 30804   Yrm crmy 30805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-supp 6900  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-omul 7133  df-er 7309  df-map 7420  df-pm 7421  df-ixp 7468  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fsupp 7828  df-fi 7869  df-sup 7899  df-oi 7933  df-card 8318  df-acn 8321  df-cda 8546  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10980  df-uz 11086  df-q 11187  df-rp 11225  df-xneg 11322  df-xadd 11323  df-xmul 11324  df-ioo 11537  df-ioc 11538  df-ico 11539  df-icc 11540  df-fz 11677  df-fzo 11799  df-fl 11903  df-mod 11971  df-seq 12082  df-exp 12141  df-fac 12328  df-bc 12355  df-hash 12380  df-shft 12874  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-limsup 13268  df-clim 13285  df-rlim 13286  df-sum 13483  df-ef 13676  df-sin 13678  df-cos 13679  df-pi 13681  df-dvds 13859  df-gcd 14017  df-prm 14090  df-numer 14140  df-denom 14141  df-struct 14506  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-starv 14584  df-sca 14585  df-vsca 14586  df-ip 14587  df-tset 14588  df-ple 14589  df-ds 14591  df-unif 14592  df-hom 14593  df-cco 14594  df-rest 14692  df-topn 14693  df-0g 14711  df-gsum 14712  df-topgen 14713  df-pt 14714  df-prds 14717  df-xrs 14771  df-qtop 14776  df-imas 14777  df-xps 14779  df-mre 14855  df-mrc 14856  df-acs 14858  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-submnd 15836  df-mulg 15929  df-cntz 16224  df-cmn 16669  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-fbas 18284  df-fg 18285  df-cnfld 18289  df-top 19266  df-bases 19268  df-topon 19269  df-topsp 19270  df-cld 19386  df-ntr 19387  df-cls 19388  df-nei 19465  df-lp 19503  df-perf 19504  df-cn 19594  df-cnp 19595  df-haus 19682  df-tx 19929  df-hmeo 20122  df-fil 20213  df-fm 20305  df-flim 20306  df-flf 20307  df-xms 20689  df-ms 20690  df-tms 20691  df-cncf 21248  df-limc 22136  df-dv 22137  df-log 22809  df-mzpcl 30623  df-mzp 30624  df-dioph 30657  df-squarenn 30745  df-pell1qr 30746  df-pell14qr 30747  df-pell1234qr 30748  df-pellfund 30749  df-rmx 30806  df-rmy 30807
This theorem is referenced by:  expdiophlem2  30932
  Copyright terms: Public domain W3C validator