Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecsqrnq Structured version   Unicode version

Theorem rmspecsqrnq 30433
Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecsqrnq  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )

Proof of Theorem rmspecsqrnq
StepHypRef Expression
1 eluzelz 11080 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
21zcnd 10956 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  CC )
32sqcld 12263 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A ^ 2 )  e.  CC )
4 ax-1cn 9539 . . . 4  |-  1  e.  CC
5 subcl 9808 . . . 4  |-  ( ( ( A ^ 2 )  e.  CC  /\  1  e.  CC )  ->  ( ( A ^
2 )  -  1 )  e.  CC )
63, 4, 5sylancl 662 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
76sqrcld 13217 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  CC )
8 eluz2b2 11143 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
98biimpi 194 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  e.  NN  /\  1  < 
A ) )
109simpld 459 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
1110nnsqcld 12285 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A ^ 2 )  e.  NN )
12 nnm1nn0 10826 . . . 4  |-  ( ( A ^ 2 )  e.  NN  ->  (
( A ^ 2 )  -  1 )  e.  NN0 )
1311, 12syl 16 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  NN0 )
14 nnm1nn0 10826 . . . 4  |-  ( A  e.  NN  ->  ( A  -  1 )  e.  NN0 )
1510, 14syl 16 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  e. 
NN0 )
16 eluzelre 11081 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  RR )
1716recnd 9611 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  CC )
18 binom2sub 12240 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
1917, 4, 18sylancl 662 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A  -  1 ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
20 2re 10594 . . . . . . . 8  |-  2  e.  RR
21 1re 9584 . . . . . . . . 9  |-  1  e.  RR
22 remulcl 9566 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  x.  1 )  e.  RR )
2316, 21, 22sylancl 662 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  x.  1 )  e.  RR )
24 remulcl 9566 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( A  x.  1
)  e.  RR )  ->  ( 2  x.  ( A  x.  1 ) )  e.  RR )
2520, 23, 24sylancr 663 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  ( A  x.  1 ) )  e.  RR )
2625recnd 9611 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  ( A  x.  1 ) )  e.  CC )
2721resqcli 12208 . . . . . . . 8  |-  ( 1 ^ 2 )  e.  RR
2827recni 9597 . . . . . . 7  |-  ( 1 ^ 2 )  e.  CC
2928a1i 11 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1 ^ 2 )  e.  CC )
303, 26, 29subsubd 9947 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  -  ( ( 2  x.  ( A  x.  1 ) )  -  (
1 ^ 2 ) ) )  =  ( ( ( A ^
2 )  -  (
2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
3119, 30eqtr4d 2504 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A  -  1 ) ^ 2 )  =  ( ( A ^
2 )  -  (
( 2  x.  ( A  x.  1 ) )  -  ( 1 ^ 2 ) ) ) )
3221a1i 11 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
33 resubcl 9872 . . . . . 6  |-  ( ( ( 2  x.  ( A  x.  1 ) )  e.  RR  /\  ( 1 ^ 2 )  e.  RR )  ->  ( ( 2  x.  ( A  x.  1 ) )  -  ( 1 ^ 2 ) )  e.  RR )
3425, 27, 33sylancl 662 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
2  x.  ( A  x.  1 ) )  -  ( 1 ^ 2 ) )  e.  RR )
3511nnred 10540 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A ^ 2 )  e.  RR )
3642timesi 10645 . . . . . . . 8  |-  ( 2  x.  1 )  =  ( 1  +  1 )
379simprd 463 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  A )
3820a1i 11 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  2  e.  RR )
39 2pos 10616 . . . . . . . . . . 11  |-  0  <  2
4039a1i 11 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <  2 )
41 ltmul2 10382 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  A  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 1  < 
A  <->  ( 2  x.  1 )  <  (
2  x.  A ) ) )
4232, 16, 38, 40, 41syl112anc 1227 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1  <  A  <->  ( 2  x.  1 )  < 
( 2  x.  A
) ) )
4337, 42mpbid 210 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  1 )  < 
( 2  x.  A
) )
4436, 43syl5eqbrr 4474 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1  +  1 )  < 
( 2  x.  A
) )
45 remulcl 9566 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
4620, 16, 45sylancr 663 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  A )  e.  RR )
4732, 32, 46ltaddsubd 10141 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
1  +  1 )  <  ( 2  x.  A )  <->  1  <  ( ( 2  x.  A
)  -  1 ) ) )
4844, 47mpbid 210 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  ( ( 2  x.  A
)  -  1 ) )
4917mulid1d 9602 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  x.  1 )  =  A )
5049oveq2d 6291 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  ( A  x.  1 ) )  =  ( 2  x.  A
) )
51 sq1 12217 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
5251a1i 11 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1 ^ 2 )  =  1 )
5350, 52oveq12d 6293 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
2  x.  ( A  x.  1 ) )  -  ( 1 ^ 2 ) )  =  ( ( 2  x.  A )  -  1 ) )
5448, 53breqtrrd 4466 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  ( ( 2  x.  ( A  x.  1 ) )  -  ( 1 ^ 2 ) ) )
5532, 34, 35, 54ltsub2dd 10154 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  -  ( ( 2  x.  ( A  x.  1 ) )  -  (
1 ^ 2 ) ) )  <  (
( A ^ 2 )  -  1 ) )
5631, 55eqbrtrd 4460 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A  -  1 ) ^ 2 )  < 
( ( A ^
2 )  -  1 ) )
5735ltm1d 10467 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  <  ( A ^ 2 ) )
58 npcan 9818 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  +  1 )  =  A )
5917, 4, 58sylancl 662 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A  -  1 )  +  1 )  =  A )
6059oveq1d 6290 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( A  -  1 )  +  1 ) ^ 2 )  =  ( A ^ 2 ) )
6157, 60breqtrrd 4466 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  <  (
( ( A  - 
1 )  +  1 ) ^ 2 ) )
62 nonsq 14140 . . 3  |-  ( ( ( ( ( A ^ 2 )  - 
1 )  e.  NN0  /\  ( A  -  1 )  e.  NN0 )  /\  ( ( ( A  -  1 ) ^
2 )  <  (
( A ^ 2 )  -  1 )  /\  ( ( A ^ 2 )  - 
1 )  <  (
( ( A  - 
1 )  +  1 ) ^ 2 ) ) )  ->  -.  ( sqr `  ( ( A ^ 2 )  -  1 ) )  e.  QQ )
6313, 15, 56, 61, 62syl22anc 1224 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  -.  ( sqr `  ( ( A ^ 2 )  - 
1 ) )  e.  QQ )
647, 63eldifd 3480 1  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    \ cdif 3466   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    - cmin 9794   NNcn 10525   2c2 10574   NN0cn0 10784   ZZ>=cuz 11071   QQcq 11171   ^cexp 12122   sqrcsqr 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-dvds 13837  df-gcd 13993  df-numer 14116  df-denom 14117
This theorem is referenced by:  rmspecnonsq  30434  rmxypairf1o  30438  rmxycomplete  30444  rmxyneg  30447  rmxyadd  30448  rmxy1  30449  rmxy0  30450  jm2.22  30530
  Copyright terms: Public domain W3C validator