Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecfund Structured version   Unicode version

Theorem rmspecfund 29255
Description: The base of exponent used to define the X and Y sequences is the fundamental solution of the corresponding Pell equation. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecfund  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  =  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )

Proof of Theorem rmspecfund
StepHypRef Expression
1 rmspecnonsq 29253 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ( NN  \NN ) )
2 eluzelz 10875 . . . . . . . . . . . . 13  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
3 zsqcl 11941 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
42, 3syl 16 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A ^ 2 )  e.  ZZ )
54zred 10752 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A ^ 2 )  e.  RR )
6 1re 9390 . . . . . . . . . . . 12  |-  1  e.  RR
76a1i 11 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
85, 7resubcld 9781 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  RR )
9 sq1 11965 . . . . . . . . . . . . 13  |-  ( 1 ^ 2 )  =  1
109a1i 11 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1 ^ 2 )  =  1 )
11 eluz2b2 10932 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
1211simprbi 464 . . . . . . . . . . . . 13  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  A )
13 eluzelre 10876 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  RR )
14 0le1 9868 . . . . . . . . . . . . . . 15  |-  0  <_  1
1514a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <_  1 )
16 2nn0 10601 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
17 eluznn0 10929 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  NN0 )
1816, 17mpan 670 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN0 )
1918nn0ge0d 10644 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <_  A )
207, 13, 15, 19lt2sqd 12047 . . . . . . . . . . . . 13  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1  <  A  <->  ( 1 ^ 2 )  < 
( A ^ 2 ) ) )
2112, 20mpbid 210 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1 ^ 2 )  < 
( A ^ 2 ) )
2210, 21eqbrtrrd 4319 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  ( A ^ 2 ) )
237, 5posdifd 9931 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1  <  ( A ^
2 )  <->  0  <  ( ( A ^ 2 )  -  1 ) ) )
2422, 23mpbid 210 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <  ( ( A ^ 2 )  -  1 ) )
258, 24elrpd 11030 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  RR+ )
2625rpsqrcld 12903 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  RR+ )
2726rpred 11032 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  RR )
2827recnd 9417 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  CC )
2928mulid1d 9408 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  1 )  =  ( sqr `  ( ( A ^ 2 )  -  1 ) ) )
3029oveq2d 6112 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  1 ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
31 pell1qrss14 29214 . . . . . 6  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
(Pell1QR `  ( ( A ^ 2 )  - 
1 ) )  C_  (Pell14QR `  ( ( A ^ 2 )  - 
1 ) ) )
321, 31syl 16 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  (Pell1QR `  (
( A ^ 2 )  -  1 ) )  C_  (Pell14QR `  (
( A ^ 2 )  -  1 ) ) )
33 1nn0 10600 . . . . . . 7  |-  1  e.  NN0
3433a1i 11 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  e.  NN0 )
359oveq2i 6107 . . . . . . . . 9  |-  ( ( ( A ^ 2 )  -  1 )  x.  ( 1 ^ 2 ) )  =  ( ( ( A ^ 2 )  - 
1 )  x.  1 )
368recnd 9417 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
3736mulid1d 9408 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( A ^ 2 )  -  1 )  x.  1 )  =  ( ( A ^
2 )  -  1 ) )
3835, 37syl5eq 2487 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( A ^ 2 )  -  1 )  x.  ( 1 ^ 2 ) )  =  ( ( A ^
2 )  -  1 ) )
3938oveq2d 6112 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
1 ^ 2 ) ) )  =  ( ( A ^ 2 )  -  ( ( A ^ 2 )  -  1 ) ) )
405recnd 9417 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A ^ 2 )  e.  CC )
41 ax-1cn 9345 . . . . . . . . 9  |-  1  e.  CC
4241a1i 11 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  e.  CC )
4340, 42nncand 9729 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  -  ( ( A ^
2 )  -  1 ) )  =  1 )
4439, 43eqtrd 2475 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
1 ^ 2 ) ) )  =  1 )
45 pellqrexplicit 29223 . . . . . 6  |-  ( ( ( ( ( A ^ 2 )  - 
1 )  e.  ( NN  \NN )  /\  A  e. 
NN0  /\  1  e.  NN0 )  /\  ( ( A ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( 1 ^ 2 ) ) )  =  1 )  ->  ( A  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  1 ) )  e.  (Pell1QR `  ( ( A ^ 2 )  - 
1 ) ) )
461, 18, 34, 44, 45syl31anc 1221 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  1 ) )  e.  (Pell1QR `  ( ( A ^
2 )  -  1 ) ) )
4732, 46sseldd 3362 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  1 ) )  e.  (Pell14QR `  ( ( A ^
2 )  -  1 ) ) )
4830, 47eqeltrrd 2518 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  e.  (Pell14QR `  ( ( A ^
2 )  -  1 ) ) )
497, 27readdcld 9418 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  e.  RR )
5013, 27readdcld 9418 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  e.  RR )
517, 26ltaddrpd 11061 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  ( 1  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
527, 13, 27, 12ltadd1dd 9955 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  <  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
537, 49, 50, 51, 52lttrd 9537 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
54 pellfundlb 29230 . . 3  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ( NN 
\NN )  /\  ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  /\  1  < 
( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) )  ->  (PellFund `  ( ( A ^
2 )  -  1 ) )  <_  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
551, 48, 53, 54syl3anc 1218 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  <_  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
5640, 42npcand 9728 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( A ^ 2 )  -  1 )  +  1 )  =  ( A ^ 2 ) )
5756fveq2d 5700 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( ( A ^ 2 )  - 
1 )  +  1 ) )  =  ( sqr `  ( A ^ 2 ) ) )
5813, 19sqrsqd 12911 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( A ^ 2 ) )  =  A )
5957, 58eqtrd 2475 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( ( A ^ 2 )  - 
1 )  +  1 ) )  =  A )
6059oveq1d 6111 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( sqr `  ( ( ( A ^ 2 )  -  1 )  +  1 ) )  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
61 pellfundge 29228 . . . 4  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
( ( sqr `  (
( ( A ^
2 )  -  1 )  +  1 ) )  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) )  <_ 
(PellFund `  ( ( A ^ 2 )  - 
1 ) ) )
621, 61syl 16 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( sqr `  ( ( ( A ^ 2 )  -  1 )  +  1 ) )  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  <_  (PellFund `  ( ( A ^
2 )  -  1 ) ) )
6360, 62eqbrtrrd 4319 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  <_  (PellFund `  ( ( A ^
2 )  -  1 ) ) )
64 pellfundre 29227 . . . 4  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
(PellFund `  ( ( A ^ 2 )  - 
1 ) )  e.  RR )
651, 64syl 16 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  e.  RR )
6665, 50letri3d 9521 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (PellFund `  ( ( A ^
2 )  -  1 ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) )  <->  ( (PellFund `  ( ( A ^
2 )  -  1 ) )  <_  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) )  /\  ( A  +  ( sqr `  ( ( A ^ 2 )  - 
1 ) ) )  <_  (PellFund `  ( ( A ^ 2 )  - 
1 ) ) ) ) )
6755, 63, 66mpbir2and 913 1  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  =  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756    \ cdif 3330    C_ wss 3333   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   CCcc 9285   RRcr 9286   0cc0 9287   1c1 9288    + caddc 9290    x. cmul 9292    < clt 9423    <_ cle 9424    - cmin 9600   NNcn 10327   2c2 10376   NN0cn0 10584   ZZcz 10651   ZZ>=cuz 10866   ^cexp 11870   sqrcsqr 12727  ◻NNcsquarenn 29182  Pell1QRcpell1qr 29183  Pell14QRcpell14qr 29185  PellFundcpellfund 29186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-omul 6930  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-sup 7696  df-oi 7729  df-card 8114  df-acn 8117  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-n0 10585  df-z 10652  df-uz 10867  df-q 10959  df-rp 10997  df-ico 11311  df-fz 11443  df-fl 11647  df-mod 11714  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-dvds 13541  df-gcd 13696  df-numer 13818  df-denom 13819  df-squarenn 29187  df-pell1qr 29188  df-pell14qr 29189  df-pell1234qr 29190  df-pellfund 29191
This theorem is referenced by:  rmxyelqirr  29256  rmxycomplete  29263  rmbaserp  29265
  Copyright terms: Public domain W3C validator