Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecfund Structured version   Unicode version

Theorem rmspecfund 30773
Description: The base of exponent used to define the X and Y sequences is the fundamental solution of the corresponding Pell equation. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecfund  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  =  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )

Proof of Theorem rmspecfund
StepHypRef Expression
1 rmspecnonsq 30771 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ( NN  \NN ) )
2 eluzelz 11103 . . . . . . . . . . . . 13  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
3 zsqcl 12218 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
42, 3syl 16 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A ^ 2 )  e.  ZZ )
54zred 10978 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A ^ 2 )  e.  RR )
6 1re 9607 . . . . . . . . . . . 12  |-  1  e.  RR
76a1i 11 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
85, 7resubcld 9999 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  RR )
9 sq1 12242 . . . . . . . . . . . . 13  |-  ( 1 ^ 2 )  =  1
109a1i 11 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1 ^ 2 )  =  1 )
11 eluz2b2 11166 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
1211simprbi 464 . . . . . . . . . . . . 13  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  A )
13 eluzelre 11104 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  RR )
14 0le1 10088 . . . . . . . . . . . . . . 15  |-  0  <_  1
1514a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <_  1 )
16 2nn0 10824 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
17 eluznn0 11163 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  NN0 )
1816, 17mpan 670 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN0 )
1918nn0ge0d 10867 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <_  A )
207, 13, 15, 19lt2sqd 12324 . . . . . . . . . . . . 13  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1  <  A  <->  ( 1 ^ 2 )  < 
( A ^ 2 ) ) )
2112, 20mpbid 210 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1 ^ 2 )  < 
( A ^ 2 ) )
2210, 21eqbrtrrd 4475 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  ( A ^ 2 ) )
237, 5posdifd 10151 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1  <  ( A ^
2 )  <->  0  <  ( ( A ^ 2 )  -  1 ) ) )
2422, 23mpbid 210 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <  ( ( A ^ 2 )  -  1 ) )
258, 24elrpd 11266 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  RR+ )
2625rpsqrtcld 13223 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  RR+ )
2726rpred 11268 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  RR )
2827recnd 9634 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  CC )
2928mulid1d 9625 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  1 )  =  ( sqr `  ( ( A ^ 2 )  -  1 ) ) )
3029oveq2d 6311 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  1 ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
31 pell1qrss14 30732 . . . . . 6  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
(Pell1QR `  ( ( A ^ 2 )  - 
1 ) )  C_  (Pell14QR `  ( ( A ^ 2 )  - 
1 ) ) )
321, 31syl 16 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  (Pell1QR `  (
( A ^ 2 )  -  1 ) )  C_  (Pell14QR `  (
( A ^ 2 )  -  1 ) ) )
33 1nn0 10823 . . . . . . 7  |-  1  e.  NN0
3433a1i 11 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  e.  NN0 )
359oveq2i 6306 . . . . . . . . 9  |-  ( ( ( A ^ 2 )  -  1 )  x.  ( 1 ^ 2 ) )  =  ( ( ( A ^ 2 )  - 
1 )  x.  1 )
368recnd 9634 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
3736mulid1d 9625 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( A ^ 2 )  -  1 )  x.  1 )  =  ( ( A ^
2 )  -  1 ) )
3835, 37syl5eq 2520 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( A ^ 2 )  -  1 )  x.  ( 1 ^ 2 ) )  =  ( ( A ^
2 )  -  1 ) )
3938oveq2d 6311 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
1 ^ 2 ) ) )  =  ( ( A ^ 2 )  -  ( ( A ^ 2 )  -  1 ) ) )
405recnd 9634 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A ^ 2 )  e.  CC )
41 ax-1cn 9562 . . . . . . . . 9  |-  1  e.  CC
4241a1i 11 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  e.  CC )
4340, 42nncand 9947 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  -  ( ( A ^
2 )  -  1 ) )  =  1 )
4439, 43eqtrd 2508 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  -  ( ( ( A ^ 2 )  - 
1 )  x.  (
1 ^ 2 ) ) )  =  1 )
45 pellqrexplicit 30741 . . . . . 6  |-  ( ( ( ( ( A ^ 2 )  - 
1 )  e.  ( NN  \NN )  /\  A  e. 
NN0  /\  1  e.  NN0 )  /\  ( ( A ^ 2 )  -  ( ( ( A ^ 2 )  -  1 )  x.  ( 1 ^ 2 ) ) )  =  1 )  ->  ( A  +  ( ( sqr `  ( ( A ^ 2 )  - 
1 ) )  x.  1 ) )  e.  (Pell1QR `  ( ( A ^ 2 )  - 
1 ) ) )
461, 18, 34, 44, 45syl31anc 1231 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  1 ) )  e.  (Pell1QR `  ( ( A ^
2 )  -  1 ) ) )
4732, 46sseldd 3510 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  1 ) )  e.  (Pell14QR `  ( ( A ^
2 )  -  1 ) ) )
4830, 47eqeltrrd 2556 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  e.  (Pell14QR `  ( ( A ^
2 )  -  1 ) ) )
497, 27readdcld 9635 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  e.  RR )
5013, 27readdcld 9635 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  e.  RR )
517, 26ltaddrpd 11297 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  ( 1  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
527, 13, 27, 12ltadd1dd 10175 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 1  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  <  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
537, 49, 50, 51, 52lttrd 9754 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
54 pellfundlb 30748 . . 3  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ( NN 
\NN )  /\  ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) )  e.  (Pell14QR `  (
( A ^ 2 )  -  1 ) )  /\  1  < 
( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) )  ->  (PellFund `  ( ( A ^
2 )  -  1 ) )  <_  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
551, 48, 53, 54syl3anc 1228 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  <_  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
5640, 42npcand 9946 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( A ^ 2 )  -  1 )  +  1 )  =  ( A ^ 2 ) )
5756fveq2d 5876 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( ( A ^ 2 )  - 
1 )  +  1 ) )  =  ( sqr `  ( A ^ 2 ) ) )
5813, 19sqrtsqd 13231 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( A ^ 2 ) )  =  A )
5957, 58eqtrd 2508 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( ( A ^ 2 )  - 
1 )  +  1 ) )  =  A )
6059oveq1d 6310 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( sqr `  ( ( ( A ^ 2 )  -  1 )  +  1 ) )  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) )
61 pellfundge 30746 . . . 4  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
( ( sqr `  (
( ( A ^
2 )  -  1 )  +  1 ) )  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) )  <_ 
(PellFund `  ( ( A ^ 2 )  - 
1 ) ) )
621, 61syl 16 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( sqr `  ( ( ( A ^ 2 )  -  1 )  +  1 ) )  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  <_  (PellFund `  ( ( A ^
2 )  -  1 ) ) )
6360, 62eqbrtrrd 4475 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) )  <_  (PellFund `  ( ( A ^
2 )  -  1 ) ) )
64 pellfundre 30745 . . . 4  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
(PellFund `  ( ( A ^ 2 )  - 
1 ) )  e.  RR )
651, 64syl 16 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  e.  RR )
6665, 50letri3d 9738 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (PellFund `  ( ( A ^
2 )  -  1 ) )  =  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) )  <->  ( (PellFund `  ( ( A ^
2 )  -  1 ) )  <_  ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) )  /\  ( A  +  ( sqr `  ( ( A ^ 2 )  - 
1 ) ) )  <_  (PellFund `  ( ( A ^ 2 )  - 
1 ) ) ) ) )
6755, 63, 66mpbir2and 920 1  |-  ( A  e.  ( ZZ>= `  2
)  ->  (PellFund `  (
( A ^ 2 )  -  1 ) )  =  ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767    \ cdif 3478    C_ wss 3481   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    < clt 9640    <_ cle 9641    - cmin 9817   NNcn 10548   2c2 10597   NN0cn0 10807   ZZcz 10876   ZZ>=cuz 11094   ^cexp 12146   sqrcsqrt 13046  ◻NNcsquarenn 30700  Pell1QRcpell1qr 30701  Pell14QRcpell14qr 30703  PellFundcpellfund 30704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-omul 7147  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-oi 7947  df-card 8332  df-acn 8335  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-ico 11547  df-fz 11685  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-dvds 13865  df-gcd 14021  df-numer 14144  df-denom 14145  df-squarenn 30705  df-pell1qr 30706  df-pell14qr 30707  df-pell1234qr 30708  df-pellfund 30709
This theorem is referenced by:  rmxyelqirr  30774  rmxycomplete  30781  rmbaserp  30783
  Copyright terms: Public domain W3C validator