Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmorabex Structured version   Unicode version

Theorem rmorabex 4651
 Description: Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
rmorabex

Proof of Theorem rmorabex
StepHypRef Expression
1 moabex 4650 . 2
2 df-rmo 2762 . 2
3 df-rab 2763 . . 3
43eleq1i 2479 . 2
51, 2, 43imtr4i 266 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 367   wcel 1842  wmo 2239  cab 2387  wrmo 2757  crab 2758  cvv 3059 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-rmo 2762  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-sn 3973  df-pr 3975 This theorem is referenced by:  supexd  7946
 Copyright terms: Public domain W3C validator