MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoim Structured version   Unicode version

Theorem rmoim 3258
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmoim  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E* x  e.  A  ps  ->  E* x  e.  A  ph )
)

Proof of Theorem rmoim
StepHypRef Expression
1 df-ral 2800 . . 3  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
2 imdistan 689 . . . 4  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  <->  ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
) )
32albii 1611 . . 3  |-  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  <->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps ) ) )
41, 3bitri 249 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps ) ) )
5 moim 2326 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
)  ->  ( E* x ( x  e.  A  /\  ps )  ->  E* x ( x  e.  A  /\  ph ) ) )
6 df-rmo 2803 . . 3  |-  ( E* x  e.  A  ps  <->  E* x ( x  e.  A  /\  ps )
)
7 df-rmo 2803 . . 3  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
85, 6, 73imtr4g 270 . 2  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  A  /\  ps )
)  ->  ( E* x  e.  A  ps  ->  E* x  e.  A  ph ) )
94, 8sylbi 195 1  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E* x  e.  A  ps  ->  E* x  e.  A  ph )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1368    e. wcel 1758   E*wmo 2261   A.wral 2795   E*wrmo 2798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-12 1794  ax-13 1952
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1588  df-nf 1591  df-eu 2264  df-mo 2265  df-ral 2800  df-rmo 2803
This theorem is referenced by:  rmoimia  3259  2rmorex  3263  disjss2  4365  catideu  14717  evlseu  17711  frlmup4  18340  2ndcdisj  19178  reuimrmo  30142  2reurex  30145
  Copyright terms: Public domain W3C validator