MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobiia Structured version   Unicode version

Theorem rmobiia 3026
Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rmobiia  |-  ( E* x  e.  A  ph  <->  E* x  e.  A  ps )

Proof of Theorem rmobiia
StepHypRef Expression
1 rmobiia.1 . . . 4  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.32i 641 . . 3  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
)
32mobii 2291 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  E* x ( x  e.  A  /\  ps )
)
4 df-rmo 2790 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
5 df-rmo 2790 . 2  |-  ( E* x  e.  A  ps  <->  E* x ( x  e.  A  /\  ps )
)
63, 4, 53bitr4i 280 1  |-  ( E* x  e.  A  ph  <->  E* x  e.  A  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    e. wcel 1870   E*wmo 2267   E*wrmo 2785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-12 1907
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-eu 2270  df-mo 2271  df-rmo 2790
This theorem is referenced by:  rmobii  3027
  Copyright terms: Public domain W3C validator