MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo4 Structured version   Unicode version

Theorem rmo4 3147
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rmo4  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem rmo4
StepHypRef Expression
1 df-rmo 2718 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 an4 820 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  /\  (
y  e.  A  /\  ps ) )  <->  ( (
x  e.  A  /\  y  e.  A )  /\  ( ph  /\  ps ) ) )
3 ancom 450 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  <->  ( y  e.  A  /\  x  e.  A )
)
43anbi1i 695 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( ph  /\ 
ps ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  ps ) ) )
52, 4bitri 249 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  /\  (
y  e.  A  /\  ps ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  ps ) ) )
65imbi1i 325 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  ph )  /\  ( y  e.  A  /\  ps ) )  ->  x  =  y )  <->  ( ( ( y  e.  A  /\  x  e.  A )  /\  ( ph  /\  ps ) )  ->  x  =  y ) )
7 impexp 446 . . . . . . 7  |-  ( ( ( ( y  e.  A  /\  x  e.  A )  /\  ( ph  /\  ps ) )  ->  x  =  y )  <->  ( ( y  e.  A  /\  x  e.  A )  ->  (
( ph  /\  ps )  ->  x  =  y ) ) )
8 impexp 446 . . . . . . 7  |-  ( ( ( y  e.  A  /\  x  e.  A
)  ->  ( ( ph  /\  ps )  ->  x  =  y )
)  <->  ( y  e.  A  ->  ( x  e.  A  ->  ( (
ph  /\  ps )  ->  x  =  y ) ) ) )
96, 7, 83bitri 271 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  ph )  /\  ( y  e.  A  /\  ps ) )  ->  x  =  y )  <->  ( y  e.  A  -> 
( x  e.  A  ->  ( ( ph  /\  ps )  ->  x  =  y ) ) ) )
109albii 1610 . . . . 5  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  ( y  e.  A  /\  ps ) )  ->  x  =  y )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  ps )  ->  x  =  y ) ) ) )
11 df-ral 2715 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  ps )  ->  x  =  y ) )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  ps )  ->  x  =  y ) ) ) )
12 r19.21v 2798 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  ps )  ->  x  =  y ) )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y )
) )
1310, 11, 123bitr2i 273 . . . 4  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  ( y  e.  A  /\  ps ) )  ->  x  =  y )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y )
) )
1413albii 1610 . . 3  |-  ( A. x A. y ( ( ( x  e.  A  /\  ph )  /\  (
y  e.  A  /\  ps ) )  ->  x  =  y )  <->  A. x
( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y ) ) )
15 eleq1 2498 . . . . 5  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
16 rmo4.1 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
1715, 16anbi12d 710 . . . 4  |-  ( x  =  y  ->  (
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  ps )
) )
1817mo4 2315 . . 3  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x A. y ( ( ( x  e.  A  /\  ph )  /\  ( y  e.  A  /\  ps ) )  ->  x  =  y )
)
19 df-ral 2715 . . 3  |-  ( A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y )
) )
2014, 18, 193bitr4i 277 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) )
211, 20bitri 249 1  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367    e. wcel 1756   E*wmo 2253   A.wral 2710   E*wrmo 2713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-cleq 2431  df-clel 2434  df-ral 2715  df-rmo 2718
This theorem is referenced by:  reu4  3148  disjor  4271  somo  4670  supmo  7694  sqrmo  12733  catideu  14605  poslubmo  15308  posglbmo  15309  mgmidmo  15410  lspextmo  17114  evlseu  17577  ply1divmo  21582  tghilbert1_2  23014  cvmliftmo  27125  hilbert1.2  28137  idomsubgmo  29516
  Copyright terms: Public domain W3C validator