Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmo3f Structured version   Unicode version

Theorem rmo3f 27520
Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
rmo3f.1  |-  F/_ x A
rmo3f.2  |-  F/_ y A
rmo3f.3  |-  F/ y
ph
Assertion
Ref Expression
rmo3f  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem rmo3f
StepHypRef Expression
1 df-rmo 2815 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 sban 2141 . . . . . . . . . . 11  |-  ( [ y  /  x ]
( x  e.  A  /\  ph )  <->  ( [
y  /  x ]
x  e.  A  /\  [ y  /  x ] ph ) )
3 rmo3f.1 . . . . . . . . . . . . 13  |-  F/_ x A
43clelsb3f 27505 . . . . . . . . . . . 12  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
54anbi1i 695 . . . . . . . . . . 11  |-  ( ( [ y  /  x ] x  e.  A  /\  [ y  /  x ] ph )  <->  ( y  e.  A  /\  [ y  /  x ] ph ) )
62, 5bitri 249 . . . . . . . . . 10  |-  ( [ y  /  x ]
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  [ y  /  x ] ph ) )
76anbi2i 694 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  <->  ( (
x  e.  A  /\  ph )  /\  ( y  e.  A  /\  [
y  /  x ] ph ) ) )
8 an4 824 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  /\  (
y  e.  A  /\  [ y  /  x ] ph ) )  <->  ( (
x  e.  A  /\  y  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
9 ancom 450 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  <->  ( y  e.  A  /\  x  e.  A )
)
109anbi1i 695 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( ph  /\ 
[ y  /  x ] ph ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
117, 8, 103bitri 271 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
1211imbi1i 325 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y )  <->  ( (
( y  e.  A  /\  x  e.  A
)  /\  ( ph  /\ 
[ y  /  x ] ph ) )  ->  x  =  y )
)
13 impexp 446 . . . . . . 7  |-  ( ( ( ( y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [ y  /  x ] ph ) )  ->  x  =  y )  <->  ( ( y  e.  A  /\  x  e.  A )  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
14 impexp 446 . . . . . . 7  |-  ( ( ( y  e.  A  /\  x  e.  A
)  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
)  <->  ( y  e.  A  ->  ( x  e.  A  ->  ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
1512, 13, 143bitri 271 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y )  <->  ( y  e.  A  ->  ( x  e.  A  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
1615albii 1641 . . . . 5  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
17 df-ral 2812 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
18 rmo3f.2 . . . . . . 7  |-  F/_ y A
1918nfcri 2612 . . . . . 6  |-  F/ y  x  e.  A
2019r19.21 2856 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
2116, 17, 203bitr2i 273 . . . 4  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
2221albii 1641 . . 3  |-  ( A. x A. y ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
23 rmo3f.3 . . . . 5  |-  F/ y
ph
2419, 23nfan 1929 . . . 4  |-  F/ y ( x  e.  A  /\  ph )
2524mo3 2324 . . 3  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y ) )
26 df-ral 2812 . . 3  |-  ( A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
2722, 25, 263bitr4i 277 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
281, 27bitri 249 1  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1393   F/wnf 1617   [wsb 1740    e. wcel 1819   E*wmo 2284   F/_wnfc 2605   A.wral 2807   E*wrmo 2810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rmo 2815
This theorem is referenced by:  rmo4f  27522
  Copyright terms: Public domain W3C validator