MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmfn Structured version   Unicode version

Theorem rlmfn 18341
Description: ringLMod is a function. (Contributed by Stefan O'Rear, 6-Dec-2014.)
Assertion
Ref Expression
rlmfn  |- ringLMod  Fn  _V

Proof of Theorem rlmfn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 fvex 5882 . 2  |-  ( (subringAlg  `  a ) `  ( Base `  a ) )  e.  _V
2 df-rgmod 18324 . 2  |- ringLMod  =  ( a  e.  _V  |->  ( (subringAlg  `  a ) `  ( Base `  a )
) )
31, 2fnmpti 5715 1  |- ringLMod  Fn  _V
Colors of variables: wff setvar class
Syntax hints:   _Vcvv 3078    Fn wfn 5587   ` cfv 5592   Basecbs 15073  subringAlg csra 18319  ringLModcrglmod 18320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pr 4652
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5556  df-fun 5594  df-fn 5595  df-fv 5600  df-rgmod 18324
This theorem is referenced by:  lidlval  18343  rspval  18344
  Copyright terms: Public domain W3C validator