![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rlimss | Structured version Unicode version |
Description: Domain closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimpm 13095 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cnex 9473 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | reex 9483 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 2, 3 | elpm2 7353 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | simprbi 464 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | syl 16 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1955 ax-ext 2432 ax-sep 4520 ax-nul 4528 ax-pow 4577 ax-pr 4638 ax-un 6481 ax-cnex 9448 ax-resscn 9449 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2266 df-mo 2267 df-clab 2440 df-cleq 2446 df-clel 2449 df-nfc 2604 df-ne 2649 df-ral 2803 df-rex 2804 df-rab 2807 df-v 3078 df-sbc 3293 df-dif 3438 df-un 3440 df-in 3442 df-ss 3449 df-nul 3745 df-if 3899 df-pw 3969 df-sn 3985 df-pr 3987 df-op 3991 df-uni 4199 df-br 4400 df-opab 4458 df-id 4743 df-xp 4953 df-rel 4954 df-cnv 4955 df-co 4956 df-dm 4957 df-rn 4958 df-iota 5488 df-fun 5527 df-fn 5528 df-f 5529 df-fv 5533 df-ov 6202 df-oprab 6203 df-mpt2 6204 df-pm 7326 df-rlim 13084 |
This theorem is referenced by: rlimcl 13098 rlimi 13108 rlimi2 13109 rlimuni 13145 rlimres 13153 rlimeq 13164 rlimcld2 13173 rlimcn1 13183 rlimcn2 13185 rlimo1 13211 o1rlimmul 13213 rlimneg 13241 rlimsqzlem 13243 rlimno1 13248 rlimcxp 22499 |
Copyright terms: Public domain | W3C validator |