MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimss Structured version   Unicode version

Theorem rlimss 13097
Description: Domain closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimss  |-  ( F  ~~> r  A  ->  dom  F 
C_  RR )

Proof of Theorem rlimss
StepHypRef Expression
1 rlimpm 13095 . 2  |-  ( F  ~~> r  A  ->  F  e.  ( CC  ^pm  RR ) )
2 cnex 9473 . . . 4  |-  CC  e.  _V
3 reex 9483 . . . 4  |-  RR  e.  _V
42, 3elpm2 7353 . . 3  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
54simprbi 464 . 2  |-  ( F  e.  ( CC  ^pm  RR )  ->  dom  F  C_  RR )
61, 5syl 16 1  |-  ( F  ~~> r  A  ->  dom  F 
C_  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1758    C_ wss 3435   class class class wbr 4399   dom cdm 4947   -->wf 5521  (class class class)co 6199    ^pm cpm 7324   CCcc 9390   RRcr 9391    ~~> r crli 13080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-br 4400  df-opab 4458  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-pm 7326  df-rlim 13084
This theorem is referenced by:  rlimcl  13098  rlimi  13108  rlimi2  13109  rlimuni  13145  rlimres  13153  rlimeq  13164  rlimcld2  13173  rlimcn1  13183  rlimcn2  13185  rlimo1  13211  o1rlimmul  13213  rlimneg  13241  rlimsqzlem  13243  rlimno1  13248  rlimcxp  22499
  Copyright terms: Public domain W3C validator