MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimo1 Structured version   Unicode version

Theorem rlimo1 13524
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
rlimo1  |-  ( F  ~~> r  A  ->  F  e.  O(1) )

Proof of Theorem rlimo1
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimf 13409 . . . . . 6  |-  ( F  ~~> r  A  ->  F : dom  F --> CC )
21ffvelrnda 6007 . . . . 5  |-  ( ( F  ~~> r  A  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
32ralrimiva 2868 . . . 4  |-  ( F  ~~> r  A  ->  A. z  e.  dom  F ( F `
 z )  e.  CC )
4 1rp 11225 . . . . 5  |-  1  e.  RR+
54a1i 11 . . . 4  |-  ( F  ~~> r  A  ->  1  e.  RR+ )
61feqmptd 5901 . . . . 5  |-  ( F  ~~> r  A  ->  F  =  ( z  e. 
dom  F  |->  ( F `
 z ) ) )
7 id 22 . . . . 5  |-  ( F  ~~> r  A  ->  F  ~~> r  A )
86, 7eqbrtrrd 4461 . . . 4  |-  ( F  ~~> r  A  ->  (
z  e.  dom  F  |->  ( F `  z
) )  ~~> r  A
)
93, 5, 8rlimi 13421 . . 3  |-  ( F  ~~> r  A  ->  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 ) )
10 rlimcl 13411 . . . . . . . 8  |-  ( F  ~~> r  A  ->  A  e.  CC )
1110adantr 463 . . . . . . 7  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  A  e.  CC )
1211abscld 13352 . . . . . 6  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( abs `  A
)  e.  RR )
13 peano2re 9742 . . . . . 6  |-  ( ( abs `  A )  e.  RR  ->  (
( abs `  A
)  +  1 )  e.  RR )
1412, 13syl 16 . . . . 5  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( ( abs `  A
)  +  1 )  e.  RR )
152adantlr 712 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
1611adantr 463 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  A  e.  CC )
1715, 16abs2difd 13373 . . . . . . . . . 10  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <_  ( abs `  ( ( F `  z )  -  A
) ) )
1815abscld 13352 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  ( F `  z
) )  e.  RR )
1912adantr 463 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  A )  e.  RR )
2018, 19resubcld 9983 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  e.  RR )
2115, 16subcld 9922 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( F `  z )  -  A )  e.  CC )
2221abscld 13352 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  ( ( F `  z )  -  A
) )  e.  RR )
23 1red 9600 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  1  e.  RR )
24 lelttr 9664 . . . . . . . . . . 11  |-  ( ( ( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  e.  RR  /\  ( abs `  ( ( F `  z )  -  A
) )  e.  RR  /\  1  e.  RR )  ->  ( ( ( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  <_ 
( abs `  (
( F `  z
)  -  A ) )  /\  ( abs `  ( ( F `  z )  -  A
) )  <  1
)  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2520, 22, 23, 24syl3anc 1226 . . . . . . . . . 10  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  <_ 
( abs `  (
( F `  z
)  -  A ) )  /\  ( abs `  ( ( F `  z )  -  A
) )  <  1
)  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2617, 25mpand 673 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2718, 19, 23ltsubadd2d 10146 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
( abs `  ( F `  z )
)  -  ( abs `  A ) )  <  1  <->  ( abs `  ( F `  z )
)  <  ( ( abs `  A )  +  1 ) ) )
2826, 27sylibd 214 . . . . . . . 8  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( abs `  ( F `  z
) )  <  (
( abs `  A
)  +  1 ) ) )
2914adantr 463 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  A )  +  1 )  e.  RR )
30 ltle 9662 . . . . . . . . 9  |-  ( ( ( abs `  ( F `  z )
)  e.  RR  /\  ( ( abs `  A
)  +  1 )  e.  RR )  -> 
( ( abs `  ( F `  z )
)  <  ( ( abs `  A )  +  1 )  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) )
3118, 29, 30syl2anc 659 . . . . . . . 8  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  < 
( ( abs `  A
)  +  1 )  ->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) )
3228, 31syld 44 . . . . . . 7  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( abs `  ( F `  z
) )  <_  (
( abs `  A
)  +  1 ) ) )
3332imim2d 52 . . . . . 6  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  1 )  -> 
( y  <_  z  ->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) ) )
3433ralimdva 2862 . . . . 5  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 )  ->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) ) )
35 breq2 4443 . . . . . . . 8  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( ( abs `  ( F `  z ) )  <_  w 
<->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) )
3635imbi2d 314 . . . . . . 7  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( (
y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w )  <->  ( y  <_  z  ->  ( abs `  ( F `  z
) )  <_  (
( abs `  A
)  +  1 ) ) ) )
3736ralbidv 2893 . . . . . 6  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w )  <->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) ) )
3837rspcev 3207 . . . . 5  |-  ( ( ( ( abs `  A
)  +  1 )  e.  RR  /\  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  ( ( abs `  A )  +  1 ) ) )  ->  E. w  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  ( F `  z )
)  <_  w )
)
3914, 34, 38syl6an 543 . . . 4  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 )  ->  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) ) )
4039reximdva 2929 . . 3  |-  ( F  ~~> r  A  ->  ( E. y  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  A ) )  <  1 )  ->  E. y  e.  RR  E. w  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w ) ) )
419, 40mpd 15 . 2  |-  ( F  ~~> r  A  ->  E. y  e.  RR  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) )
42 rlimss 13410 . . 3  |-  ( F  ~~> r  A  ->  dom  F 
C_  RR )
43 elo12 13435 . . 3  |-  ( ( F : dom  F --> CC  /\  dom  F  C_  RR )  ->  ( F  e.  O(1)  <->  E. y  e.  RR  E. w  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w ) ) )
441, 42, 43syl2anc 659 . 2  |-  ( F  ~~> r  A  ->  ( F  e.  O(1)  <->  E. y  e.  RR  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) ) )
4541, 44mpbird 232 1  |-  ( F  ~~> r  A  ->  F  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805    C_ wss 3461   class class class wbr 4439    |-> cmpt 4497   dom cdm 4988   -->wf 5566   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   1c1 9482    + caddc 9484    < clt 9617    <_ cle 9618    - cmin 9796   RR+crp 11221   abscabs 13152    ~~> r crli 13393   O(1)co1 13394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-ico 11538  df-seq 12093  df-exp 12152  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-rlim 13397  df-o1 13398
This theorem is referenced by:  rlimdmo1  13525  o1const  13527  chebbnd2  23863  chto1lb  23864  chpo1ub  23866  vmadivsum  23868  dchrvmasumlem2  23884  dchrisum0lem1  23902  dchrisum0lem2a  23903  mudivsum  23916  mulog2sumlem2  23921  vmalogdivsum2  23924  2vmadivsumlem  23926  selberglem2  23932  selberg2lem  23936  selberg4lem1  23946  pntrsumo1  23951  pntrlog2bndlem2  23964  pntrlog2bndlem4  23966  pntrlog2bndlem5  23967
  Copyright terms: Public domain W3C validator