MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimo1 Structured version   Unicode version

Theorem rlimo1 13421
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
rlimo1  |-  ( F  ~~> r  A  ->  F  e.  O(1) )

Proof of Theorem rlimo1
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimf 13306 . . . . . 6  |-  ( F  ~~> r  A  ->  F : dom  F --> CC )
21ffvelrnda 6016 . . . . 5  |-  ( ( F  ~~> r  A  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
32ralrimiva 2857 . . . 4  |-  ( F  ~~> r  A  ->  A. z  e.  dom  F ( F `
 z )  e.  CC )
4 1rp 11235 . . . . 5  |-  1  e.  RR+
54a1i 11 . . . 4  |-  ( F  ~~> r  A  ->  1  e.  RR+ )
61feqmptd 5911 . . . . 5  |-  ( F  ~~> r  A  ->  F  =  ( z  e. 
dom  F  |->  ( F `
 z ) ) )
7 id 22 . . . . 5  |-  ( F  ~~> r  A  ->  F  ~~> r  A )
86, 7eqbrtrrd 4459 . . . 4  |-  ( F  ~~> r  A  ->  (
z  e.  dom  F  |->  ( F `  z
) )  ~~> r  A
)
93, 5, 8rlimi 13318 . . 3  |-  ( F  ~~> r  A  ->  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 ) )
10 rlimcl 13308 . . . . . . . 8  |-  ( F  ~~> r  A  ->  A  e.  CC )
1110adantr 465 . . . . . . 7  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  A  e.  CC )
1211abscld 13249 . . . . . 6  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( abs `  A
)  e.  RR )
13 peano2re 9756 . . . . . 6  |-  ( ( abs `  A )  e.  RR  ->  (
( abs `  A
)  +  1 )  e.  RR )
1412, 13syl 16 . . . . 5  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( ( abs `  A
)  +  1 )  e.  RR )
152adantlr 714 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
1611adantr 465 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  A  e.  CC )
1715, 16abs2difd 13270 . . . . . . . . . 10  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <_  ( abs `  ( ( F `  z )  -  A
) ) )
1815abscld 13249 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  ( F `  z
) )  e.  RR )
1912adantr 465 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  A )  e.  RR )
2018, 19resubcld 9994 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  e.  RR )
2115, 16subcld 9936 . . . . . . . . . . . 12  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( F `  z )  -  A )  e.  CC )
2221abscld 13249 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( abs `  ( ( F `  z )  -  A
) )  e.  RR )
23 1red 9614 . . . . . . . . . . 11  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  1  e.  RR )
24 lelttr 9678 . . . . . . . . . . 11  |-  ( ( ( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  e.  RR  /\  ( abs `  ( ( F `  z )  -  A
) )  e.  RR  /\  1  e.  RR )  ->  ( ( ( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  <_ 
( abs `  (
( F `  z
)  -  A ) )  /\  ( abs `  ( ( F `  z )  -  A
) )  <  1
)  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2520, 22, 23, 24syl3anc 1229 . . . . . . . . . 10  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
( ( abs `  ( F `  z )
)  -  ( abs `  A ) )  <_ 
( abs `  (
( F `  z
)  -  A ) )  /\  ( abs `  ( ( F `  z )  -  A
) )  <  1
)  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2617, 25mpand 675 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( ( abs `  ( F `  z ) )  -  ( abs `  A ) )  <  1 ) )
2718, 19, 23ltsubadd2d 10157 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
( abs `  ( F `  z )
)  -  ( abs `  A ) )  <  1  <->  ( abs `  ( F `  z )
)  <  ( ( abs `  A )  +  1 ) ) )
2826, 27sylibd 214 . . . . . . . 8  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( abs `  ( F `  z
) )  <  (
( abs `  A
)  +  1 ) ) )
2914adantr 465 . . . . . . . . 9  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  A )  +  1 )  e.  RR )
30 ltle 9676 . . . . . . . . 9  |-  ( ( ( abs `  ( F `  z )
)  e.  RR  /\  ( ( abs `  A
)  +  1 )  e.  RR )  -> 
( ( abs `  ( F `  z )
)  <  ( ( abs `  A )  +  1 )  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) )
3118, 29, 30syl2anc 661 . . . . . . . 8  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( F `  z ) )  < 
( ( abs `  A
)  +  1 )  ->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) )
3228, 31syld 44 . . . . . . 7  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( ( abs `  ( ( F `
 z )  -  A ) )  <  1  ->  ( abs `  ( F `  z
) )  <_  (
( abs `  A
)  +  1 ) ) )
3332imim2d 52 . . . . . 6  |-  ( ( ( F  ~~> r  A  /\  y  e.  RR )  /\  z  e.  dom  F )  ->  ( (
y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  1 )  -> 
( y  <_  z  ->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) ) )
3433ralimdva 2851 . . . . 5  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 )  ->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) ) )
35 breq2 4441 . . . . . . . 8  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( ( abs `  ( F `  z ) )  <_  w 
<->  ( abs `  ( F `  z )
)  <_  ( ( abs `  A )  +  1 ) ) )
3635imbi2d 316 . . . . . . 7  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( (
y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w )  <->  ( y  <_  z  ->  ( abs `  ( F `  z
) )  <_  (
( abs `  A
)  +  1 ) ) ) )
3736ralbidv 2882 . . . . . 6  |-  ( w  =  ( ( abs `  A )  +  1 )  ->  ( A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w )  <->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_ 
( ( abs `  A
)  +  1 ) ) ) )
3837rspcev 3196 . . . . 5  |-  ( ( ( ( abs `  A
)  +  1 )  e.  RR  /\  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  ( ( abs `  A )  +  1 ) ) )  ->  E. w  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  ( F `  z )
)  <_  w )
)
3914, 34, 38syl6an 545 . . . 4  |-  ( ( F  ~~> r  A  /\  y  e.  RR )  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  <  1 )  ->  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) ) )
4039reximdva 2918 . . 3  |-  ( F  ~~> r  A  ->  ( E. y  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  A ) )  <  1 )  ->  E. y  e.  RR  E. w  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w ) ) )
419, 40mpd 15 . 2  |-  ( F  ~~> r  A  ->  E. y  e.  RR  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) )
42 rlimss 13307 . . 3  |-  ( F  ~~> r  A  ->  dom  F 
C_  RR )
43 elo12 13332 . . 3  |-  ( ( F : dom  F --> CC  /\  dom  F  C_  RR )  ->  ( F  e.  O(1)  <->  E. y  e.  RR  E. w  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( F `
 z ) )  <_  w ) ) )
441, 42, 43syl2anc 661 . 2  |-  ( F  ~~> r  A  ->  ( F  e.  O(1)  <->  E. y  e.  RR  E. w  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( F `  z ) )  <_  w ) ) )
4541, 44mpbird 232 1  |-  ( F  ~~> r  A  ->  F  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794    C_ wss 3461   class class class wbr 4437    |-> cmpt 4495   dom cdm 4989   -->wf 5574   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   1c1 9496    + caddc 9498    < clt 9631    <_ cle 9632    - cmin 9810   RR+crp 11231   abscabs 13049    ~~> r crli 13290   O(1)co1 13291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-n0 10803  df-z 10872  df-uz 11093  df-rp 11232  df-ico 11546  df-seq 12090  df-exp 12149  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-rlim 13294  df-o1 13295
This theorem is referenced by:  rlimdmo1  13422  o1const  13424  chebbnd2  23640  chto1lb  23641  chpo1ub  23643  vmadivsum  23645  dchrvmasumlem2  23661  dchrisum0lem1  23679  dchrisum0lem2a  23680  mudivsum  23693  mulog2sumlem2  23698  vmalogdivsum2  23701  2vmadivsumlem  23703  selberglem2  23709  selberg2lem  23713  selberg4lem1  23723  pntrsumo1  23728  pntrlog2bndlem2  23741  pntrlog2bndlem4  23743  pntrlog2bndlem5  23744
  Copyright terms: Public domain W3C validator