MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimno1 Structured version   Unicode version

Theorem rlimno1 13704
Description: A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
rlimno1.1  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
rlimno1.2  |-  ( ph  ->  ( x  e.  A  |->  ( 1  /  B
) )  ~~> r  0 )
rlimno1.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
rlimno1.4  |-  ( (
ph  /\  x  e.  A )  ->  B  =/=  0 )
Assertion
Ref Expression
rlimno1  |-  ( ph  ->  -.  ( x  e.  A  |->  B )  e.  O(1) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem rlimno1
Dummy variables  c 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fal 1444 . . . 4  |-  -. F.
2 rlimno1.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
3 rlimno1.4 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  =/=  0 )
42, 3reccld 10376 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
1  /  B )  e.  CC )
54ralrimiva 2839 . . . . . . 7  |-  ( ph  ->  A. x  e.  A  ( 1  /  B
)  e.  CC )
65adantr 466 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  A. x  e.  A  ( 1  /  B )  e.  CC )
7 simpr 462 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
8 1re 9642 . . . . . . . . 9  |-  1  e.  RR
9 ifcl 3951 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_ 
y ,  y ,  1 )  e.  RR )
107, 8, 9sylancl 666 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 1  <_  y , 
y ,  1 )  e.  RR )
11 1rp 11306 . . . . . . . . 9  |-  1  e.  RR+
1211a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  RR+ )
13 max1 11480 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  y  e.  RR )  ->  1  <_  if (
1  <_  y , 
y ,  1 ) )
148, 7, 13sylancr 667 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  1  <_  if ( 1  <_  y ,  y ,  1 ) )
1510, 12, 14rpgecld 11377 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 1  <_  y , 
y ,  1 )  e.  RR+ )
1615rpreccld 11351 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  e.  RR+ )
17 rlimno1.2 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( 1  /  B
) )  ~~> r  0 )
1817adantr 466 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( x  e.  A  |->  ( 1  /  B ) )  ~~> r  0 )
196, 16, 18rlimi 13564 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) ) )
20 dmmptg 5347 . . . . . . . . . 10  |-  ( A. x  e.  A  (
1  /  B )  e.  CC  ->  dom  ( x  e.  A  |->  ( 1  /  B
) )  =  A )
215, 20syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  ( 1  /  B ) )  =  A )
22 rlimss 13553 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( 1  /  B ) )  ~~> r  0  ->  dom  ( x  e.  A  |->  ( 1  /  B
) )  C_  RR )
2317, 22syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  ( 1  /  B ) )  C_  RR )
2421, 23eqsstr3d 3499 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
2524adantr 466 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  A  C_  RR )
26 rexanre 13397 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  y )
) ) )
2725, 26syl 17 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  y )
) ) )
28 rlimno1.1 . . . . . . . . 9  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
29 ressxr 9684 . . . . . . . . . . 11  |-  RR  C_  RR*
3024, 29syl6ss 3476 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR* )
31 supxrunb1 11605 . . . . . . . . . 10  |-  ( A 
C_  RR*  ->  ( A. c  e.  RR  E. x  e.  A  c  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
3230, 31syl 17 . . . . . . . . 9  |-  ( ph  ->  ( A. c  e.  RR  E. x  e.  A  c  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
3328, 32mpbird 235 . . . . . . . 8  |-  ( ph  ->  A. c  e.  RR  E. x  e.  A  c  <_  x )
3433adantr 466 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  A. c  e.  RR  E. x  e.  A  c  <_  x
)
35 r19.29 2963 . . . . . . . 8  |-  ( ( A. c  e.  RR  E. x  e.  A  c  <_  x  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B )  <_ 
y ) ) )  ->  E. c  e.  RR  ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) ) )
36 r19.29r 2964 . . . . . . . . . 10  |-  ( ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  ->  E. x  e.  A  ( c  <_  x  /\  ( c  <_  x  ->  (
( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) ) )
372adantlr 719 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  B  e.  CC )
383adantlr 719 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  B  =/=  0 )
3937, 38absrpcld 13497 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  ( abs `  B )  e.  RR+ )
4039adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  e.  RR+ )
4115ad2antrr 730 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  if (
1  <_  y , 
y ,  1 )  e.  RR+ )
428a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  1  e.  RR )
43 0le1 10137 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <_  1
4443a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  0  <_  1 )
4540rpred 11341 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  e.  RR )
467ad2antrr 730 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  y  e.  RR )
4710ad2antrr 730 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  if (
1  <_  y , 
y ,  1 )  e.  RR )
48 simpr 462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  <_  y
)
49 max2 11482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  y  e.  RR )  ->  y  <_  if (
1  <_  y , 
y ,  1 ) )
508, 46, 49sylancr 667 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  y  <_  if ( 1  <_  y ,  y ,  1 ) )
5145, 46, 47, 48, 50letrd 9792 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  <_  if ( 1  <_  y ,  y ,  1 ) )
5240, 41, 42, 44, 51lediv2ad 11363 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  <_  ( 1  / 
( abs `  B
) ) )
5341rprecred 11352 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  e.  RR )
5440rprecred 11352 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  ( abs `  B
) )  e.  RR )
5553, 54lenltd 9781 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( (
1  /  if ( 1  <_  y , 
y ,  1 ) )  <_  ( 1  /  ( abs `  B
) )  <->  -.  (
1  /  ( abs `  B ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) ) ) )
5652, 55mpbid 213 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  -.  (
1  /  ( abs `  B ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )
5737adantr 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  B  e.  CC )
5838adantr 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  B  =/=  0 )
5957, 58reccld 10376 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  B )  e.  CC )
6059subid1d 9975 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( (
1  /  B )  -  0 )  =  ( 1  /  B
) )
6160fveq2d 5881 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  ( ( 1  /  B )  -  0 ) )  =  ( abs `  ( 1  /  B ) ) )
62 1cnd 9659 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  1  e.  CC )
6362, 57, 58absdivd 13504 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  ( 1  /  B
) )  =  ( ( abs `  1
)  /  ( abs `  B ) ) )
6442, 44absidd 13472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  1 )  =  1 )
6564oveq1d 6316 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( ( abs `  1 )  / 
( abs `  B
) )  =  ( 1  /  ( abs `  B ) ) )
6661, 63, 653eqtrd 2467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  ( ( 1  /  B )  -  0 ) )  =  ( 1  /  ( abs `  B ) ) )
6766breq1d 4430 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  <->  ( 1  /  ( abs `  B
) )  <  (
1  /  if ( 1  <_  y , 
y ,  1 ) ) ) )
6856, 67mtbird 302 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  -.  ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )
6968pm2.21d 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  -> F.  ) )
7069expimpd 606 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( abs `  B
)  <_  y  /\  ( abs `  ( ( 1  /  B )  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  -> F.  ) )
7170ancomsd 455 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )  -> F.  ) )
7271imim2d 54 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  ->  ( c  <_  x  -> F.  )
) )
7372com23 81 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
c  <_  x  ->  ( ( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  -> F.  )
) )
7473impd 432 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( c  <_  x  /\  ( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7574rexlimdva 2917 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. x  e.  A  ( c  <_  x  /\  ( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7636, 75syl5 33 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7776rexlimdvw 2920 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7835, 77syl5 33 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( A. c  e.  RR  E. x  e.  A  c  <_  x  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B )  <_ 
y ) ) )  -> F.  ) )
7934, 78mpand 679 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  -> F.  )
)
8027, 79sylbird 238 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  ( ( 1  /  B )  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) )  -> F.  ) )
8119, 80mpand 679 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y )  -> F.  ) )
821, 81mtoi 181 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  -.  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  y
) )
8382nrexdv 2881 . 2  |-  ( ph  ->  -.  E. y  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  y )
)
8424, 2elo1mpt 13585 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  E. c  e.  RR  E. y  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) ) )
85 rexcom 2990 . . 3  |-  ( E. c  e.  RR  E. y  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  y
)  <->  E. y  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) )
8684, 85syl6bb 264 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  E. y  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) ) )
8783, 86mtbird 302 1  |-  ( ph  ->  -.  ( x  e.  A  |->  B )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   F. wfal 1442    e. wcel 1868    =/= wne 2618   A.wral 2775   E.wrex 2776    C_ wss 3436   ifcif 3909   class class class wbr 4420    |-> cmpt 4479   dom cdm 4849   ` cfv 5597  (class class class)co 6301   supcsup 7956   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540   +oocpnf 9672   RR*cxr 9674    < clt 9675    <_ cle 9676    - cmin 9860    / cdiv 10269   RR+crp 11302   abscabs 13285    ~~> r crli 13536   O(1)co1 13537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-er 7367  df-pm 7479  df-en 7574  df-dom 7575  df-sdom 7576  df-sup 7958  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-ico 11641  df-seq 12213  df-exp 12272  df-cj 13150  df-re 13151  df-im 13152  df-sqrt 13286  df-abs 13287  df-rlim 13540  df-o1 13541  df-lo1 13542
This theorem is referenced by:  logno1  23567
  Copyright terms: Public domain W3C validator