MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimno1 Structured version   Unicode version

Theorem rlimno1 13561
Description: A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
rlimno1.1  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
rlimno1.2  |-  ( ph  ->  ( x  e.  A  |->  ( 1  /  B
) )  ~~> r  0 )
rlimno1.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
rlimno1.4  |-  ( (
ph  /\  x  e.  A )  ->  B  =/=  0 )
Assertion
Ref Expression
rlimno1  |-  ( ph  ->  -.  ( x  e.  A  |->  B )  e.  O(1) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem rlimno1
Dummy variables  c 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fal 1405 . . . 4  |-  -. F.
2 rlimno1.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
3 rlimno1.4 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  =/=  0 )
42, 3reccld 10309 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
1  /  B )  e.  CC )
54ralrimiva 2868 . . . . . . 7  |-  ( ph  ->  A. x  e.  A  ( 1  /  B
)  e.  CC )
65adantr 463 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  A. x  e.  A  ( 1  /  B )  e.  CC )
7 simpr 459 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
8 1re 9584 . . . . . . . . 9  |-  1  e.  RR
9 ifcl 3971 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_ 
y ,  y ,  1 )  e.  RR )
107, 8, 9sylancl 660 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 1  <_  y , 
y ,  1 )  e.  RR )
11 1rp 11225 . . . . . . . . 9  |-  1  e.  RR+
1211a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  RR+ )
13 max1 11389 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  y  e.  RR )  ->  1  <_  if (
1  <_  y , 
y ,  1 ) )
148, 7, 13sylancr 661 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  1  <_  if ( 1  <_  y ,  y ,  1 ) )
1510, 12, 14rpgecld 11294 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 1  <_  y , 
y ,  1 )  e.  RR+ )
1615rpreccld 11269 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  e.  RR+ )
17 rlimno1.2 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( 1  /  B
) )  ~~> r  0 )
1817adantr 463 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( x  e.  A  |->  ( 1  /  B ) )  ~~> r  0 )
196, 16, 18rlimi 13421 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) ) )
20 dmmptg 5487 . . . . . . . . . 10  |-  ( A. x  e.  A  (
1  /  B )  e.  CC  ->  dom  ( x  e.  A  |->  ( 1  /  B
) )  =  A )
215, 20syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  ( 1  /  B ) )  =  A )
22 rlimss 13410 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( 1  /  B ) )  ~~> r  0  ->  dom  ( x  e.  A  |->  ( 1  /  B
) )  C_  RR )
2317, 22syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  ( 1  /  B ) )  C_  RR )
2421, 23eqsstr3d 3524 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
2524adantr 463 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  A  C_  RR )
26 rexanre 13264 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  y )
) ) )
2725, 26syl 16 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  y )
) ) )
28 rlimno1.1 . . . . . . . . 9  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
29 ressxr 9626 . . . . . . . . . . 11  |-  RR  C_  RR*
3024, 29syl6ss 3501 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR* )
31 supxrunb1 11514 . . . . . . . . . 10  |-  ( A 
C_  RR*  ->  ( A. c  e.  RR  E. x  e.  A  c  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
3230, 31syl 16 . . . . . . . . 9  |-  ( ph  ->  ( A. c  e.  RR  E. x  e.  A  c  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
3328, 32mpbird 232 . . . . . . . 8  |-  ( ph  ->  A. c  e.  RR  E. x  e.  A  c  <_  x )
3433adantr 463 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  A. c  e.  RR  E. x  e.  A  c  <_  x
)
35 r19.29 2989 . . . . . . . 8  |-  ( ( A. c  e.  RR  E. x  e.  A  c  <_  x  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B )  <_ 
y ) ) )  ->  E. c  e.  RR  ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) ) )
36 r19.29r 2990 . . . . . . . . . 10  |-  ( ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  ->  E. x  e.  A  ( c  <_  x  /\  ( c  <_  x  ->  (
( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) ) )
372adantlr 712 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  B  e.  CC )
383adantlr 712 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  B  =/=  0 )
3937, 38absrpcld 13364 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  ( abs `  B )  e.  RR+ )
4039adantr 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  e.  RR+ )
4115ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  if (
1  <_  y , 
y ,  1 )  e.  RR+ )
428a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  1  e.  RR )
43 0le1 10072 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <_  1
4443a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  0  <_  1 )
4540rpred 11259 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  e.  RR )
467ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  y  e.  RR )
4710ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  if (
1  <_  y , 
y ,  1 )  e.  RR )
48 simpr 459 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  <_  y
)
49 max2 11391 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  y  e.  RR )  ->  y  <_  if (
1  <_  y , 
y ,  1 ) )
508, 46, 49sylancr 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  y  <_  if ( 1  <_  y ,  y ,  1 ) )
5145, 46, 47, 48, 50letrd 9728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  <_  if ( 1  <_  y ,  y ,  1 ) )
5240, 41, 42, 44, 51lediv2ad 11281 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  <_  ( 1  / 
( abs `  B
) ) )
5341rprecred 11270 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  e.  RR )
5440rprecred 11270 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  ( abs `  B
) )  e.  RR )
5553, 54lenltd 9720 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( (
1  /  if ( 1  <_  y , 
y ,  1 ) )  <_  ( 1  /  ( abs `  B
) )  <->  -.  (
1  /  ( abs `  B ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) ) ) )
5652, 55mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  -.  (
1  /  ( abs `  B ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )
5737adantr 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  B  e.  CC )
5838adantr 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  B  =/=  0 )
5957, 58reccld 10309 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  B )  e.  CC )
6059subid1d 9911 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( (
1  /  B )  -  0 )  =  ( 1  /  B
) )
6160fveq2d 5852 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  ( ( 1  /  B )  -  0 ) )  =  ( abs `  ( 1  /  B ) ) )
62 1cnd 9601 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  1  e.  CC )
6362, 57, 58absdivd 13371 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  ( 1  /  B
) )  =  ( ( abs `  1
)  /  ( abs `  B ) ) )
6442, 44absidd 13339 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  1 )  =  1 )
6564oveq1d 6285 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( ( abs `  1 )  / 
( abs `  B
) )  =  ( 1  /  ( abs `  B ) ) )
6661, 63, 653eqtrd 2499 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  ( ( 1  /  B )  -  0 ) )  =  ( 1  /  ( abs `  B ) ) )
6766breq1d 4449 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  <->  ( 1  /  ( abs `  B
) )  <  (
1  /  if ( 1  <_  y , 
y ,  1 ) ) ) )
6856, 67mtbird 299 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  -.  ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )
6968pm2.21d 106 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  -> F.  ) )
7069expimpd 601 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( abs `  B
)  <_  y  /\  ( abs `  ( ( 1  /  B )  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  -> F.  ) )
7170ancomsd 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )  -> F.  ) )
7271imim2d 52 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  ->  ( c  <_  x  -> F.  )
) )
7372com23 78 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
c  <_  x  ->  ( ( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  -> F.  )
) )
7473impd 429 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( c  <_  x  /\  ( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7574rexlimdva 2946 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. x  e.  A  ( c  <_  x  /\  ( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7636, 75syl5 32 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7776rexlimdvw 2949 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7835, 77syl5 32 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( A. c  e.  RR  E. x  e.  A  c  <_  x  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B )  <_ 
y ) ) )  -> F.  ) )
7934, 78mpand 673 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  -> F.  )
)
8027, 79sylbird 235 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  ( ( 1  /  B )  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) )  -> F.  ) )
8119, 80mpand 673 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y )  -> F.  ) )
821, 81mtoi 178 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  -.  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  y
) )
8382nrexdv 2910 . 2  |-  ( ph  ->  -.  E. y  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  y )
)
8424, 2elo1mpt 13442 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  E. c  e.  RR  E. y  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) ) )
85 rexcom 3016 . . 3  |-  ( E. c  e.  RR  E. y  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  y
)  <->  E. y  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) )
8684, 85syl6bb 261 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  E. y  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) ) )
8783, 86mtbird 299 1  |-  ( ph  ->  -.  ( x  e.  A  |->  B )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398   F. wfal 1403    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805    C_ wss 3461   ifcif 3929   class class class wbr 4439    |-> cmpt 4497   dom cdm 4988   ` cfv 5570  (class class class)co 6270   supcsup 7892   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482   +oocpnf 9614   RR*cxr 9616    < clt 9617    <_ cle 9618    - cmin 9796    / cdiv 10202   RR+crp 11221   abscabs 13152    ~~> r crli 13393   O(1)co1 13394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-ico 11538  df-seq 12093  df-exp 12152  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-rlim 13397  df-o1 13398  df-lo1 13399
This theorem is referenced by:  logno1  23188
  Copyright terms: Public domain W3C validator