MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimno1 Structured version   Unicode version

Theorem rlimno1 13435
Description: A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
rlimno1.1  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
rlimno1.2  |-  ( ph  ->  ( x  e.  A  |->  ( 1  /  B
) )  ~~> r  0 )
rlimno1.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
rlimno1.4  |-  ( (
ph  /\  x  e.  A )  ->  B  =/=  0 )
Assertion
Ref Expression
rlimno1  |-  ( ph  ->  -.  ( x  e.  A  |->  B )  e.  O(1) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem rlimno1
Dummy variables  c 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fal 1386 . . . 4  |-  -. F.
2 rlimno1.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
3 rlimno1.4 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  =/=  0 )
42, 3reccld 10309 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
1  /  B )  e.  CC )
54ralrimiva 2878 . . . . . . 7  |-  ( ph  ->  A. x  e.  A  ( 1  /  B
)  e.  CC )
65adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  A. x  e.  A  ( 1  /  B )  e.  CC )
7 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
8 1re 9591 . . . . . . . . 9  |-  1  e.  RR
9 ifcl 3981 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_ 
y ,  y ,  1 )  e.  RR )
107, 8, 9sylancl 662 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 1  <_  y , 
y ,  1 )  e.  RR )
11 1rp 11220 . . . . . . . . 9  |-  1  e.  RR+
1211a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  RR+ )
13 max1 11382 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  y  e.  RR )  ->  1  <_  if (
1  <_  y , 
y ,  1 ) )
148, 7, 13sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  1  <_  if ( 1  <_  y ,  y ,  1 ) )
1510, 12, 14rpgecld 11287 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 1  <_  y , 
y ,  1 )  e.  RR+ )
1615rpreccld 11262 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  e.  RR+ )
17 rlimno1.2 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( 1  /  B
) )  ~~> r  0 )
1817adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( x  e.  A  |->  ( 1  /  B ) )  ~~> r  0 )
196, 16, 18rlimi 13295 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) ) )
20 dmmptg 5502 . . . . . . . . . 10  |-  ( A. x  e.  A  (
1  /  B )  e.  CC  ->  dom  ( x  e.  A  |->  ( 1  /  B
) )  =  A )
215, 20syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  ( 1  /  B ) )  =  A )
22 rlimss 13284 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( 1  /  B ) )  ~~> r  0  ->  dom  ( x  e.  A  |->  ( 1  /  B
) )  C_  RR )
2317, 22syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  ( 1  /  B ) )  C_  RR )
2421, 23eqsstr3d 3539 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
2524adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  A  C_  RR )
26 rexanre 13138 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  y )
) ) )
2725, 26syl 16 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  y )
) ) )
28 rlimno1.1 . . . . . . . . 9  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
29 ressxr 9633 . . . . . . . . . . 11  |-  RR  C_  RR*
3024, 29syl6ss 3516 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR* )
31 supxrunb1 11507 . . . . . . . . . 10  |-  ( A 
C_  RR*  ->  ( A. c  e.  RR  E. x  e.  A  c  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
3230, 31syl 16 . . . . . . . . 9  |-  ( ph  ->  ( A. c  e.  RR  E. x  e.  A  c  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
3328, 32mpbird 232 . . . . . . . 8  |-  ( ph  ->  A. c  e.  RR  E. x  e.  A  c  <_  x )
3433adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  A. c  e.  RR  E. x  e.  A  c  <_  x
)
35 r19.29 2997 . . . . . . . 8  |-  ( ( A. c  e.  RR  E. x  e.  A  c  <_  x  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B )  <_ 
y ) ) )  ->  E. c  e.  RR  ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) ) )
36 r19.29r 2998 . . . . . . . . . 10  |-  ( ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  ->  E. x  e.  A  ( c  <_  x  /\  ( c  <_  x  ->  (
( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) ) )
372adantlr 714 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  B  e.  CC )
383adantlr 714 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  B  =/=  0 )
3937, 38absrpcld 13238 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  ( abs `  B )  e.  RR+ )
4039adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  e.  RR+ )
4115ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  if (
1  <_  y , 
y ,  1 )  e.  RR+ )
428a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  1  e.  RR )
43 0le1 10072 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <_  1
4443a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  0  <_  1 )
4540rpred 11252 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  e.  RR )
467ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  y  e.  RR )
4710ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  if (
1  <_  y , 
y ,  1 )  e.  RR )
48 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  <_  y
)
49 max2 11384 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  y  e.  RR )  ->  y  <_  if (
1  <_  y , 
y ,  1 ) )
508, 46, 49sylancr 663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  y  <_  if ( 1  <_  y ,  y ,  1 ) )
5145, 46, 47, 48, 50letrd 9734 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  B )  <_  if ( 1  <_  y ,  y ,  1 ) )
5240, 41, 42, 44, 51lediv2ad 11274 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  <_  ( 1  / 
( abs `  B
) ) )
5341rprecred 11263 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  e.  RR )
5440rprecred 11263 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  ( abs `  B
) )  e.  RR )
5553, 54lenltd 9726 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( (
1  /  if ( 1  <_  y , 
y ,  1 ) )  <_  ( 1  /  ( abs `  B
) )  <->  -.  (
1  /  ( abs `  B ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) ) ) )
5652, 55mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  -.  (
1  /  ( abs `  B ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )
5737adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  B  e.  CC )
5838adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  B  =/=  0 )
5957, 58reccld 10309 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( 1  /  B )  e.  CC )
6059subid1d 9915 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( (
1  /  B )  -  0 )  =  ( 1  /  B
) )
6160fveq2d 5868 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  ( ( 1  /  B )  -  0 ) )  =  ( abs `  ( 1  /  B ) ) )
6242recnd 9618 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  1  e.  CC )
6362, 57, 58absdivd 13245 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  ( 1  /  B
) )  =  ( ( abs `  1
)  /  ( abs `  B ) ) )
6442, 44absidd 13213 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  1 )  =  1 )
6564oveq1d 6297 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( ( abs `  1 )  / 
( abs `  B
) )  =  ( 1  /  ( abs `  B ) ) )
6661, 63, 653eqtrd 2512 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( abs `  ( ( 1  /  B )  -  0 ) )  =  ( 1  /  ( abs `  B ) ) )
6766breq1d 4457 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  <->  ( 1  /  ( abs `  B
) )  <  (
1  /  if ( 1  <_  y , 
y ,  1 ) ) ) )
6856, 67mtbird 301 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  -.  ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )
6968pm2.21d 106 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A
)  /\  ( abs `  B )  <_  y
)  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  -> F.  ) )
7069expimpd 603 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( abs `  B
)  <_  y  /\  ( abs `  ( ( 1  /  B )  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  -> F.  ) )
7170ancomsd 454 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )  -> F.  ) )
7271imim2d 52 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  ->  ( c  <_  x  -> F.  )
) )
7372com23 78 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
c  <_  x  ->  ( ( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  -> F.  )
) )
7473impd 431 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  A )  ->  (
( c  <_  x  /\  ( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7574rexlimdva 2955 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. x  e.  A  ( c  <_  x  /\  ( c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7636, 75syl5 32 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7776rexlimdvw 2958 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  ( E. x  e.  A  c  <_  x  /\  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
) )  -> F.  ) )
7835, 77syl5 32 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( A. c  e.  RR  E. x  e.  A  c  <_  x  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( ( abs `  ( ( 1  /  B )  - 
0 ) )  < 
( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B )  <_ 
y ) ) )  -> F.  ) )
7934, 78mpand 675 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( ( abs `  (
( 1  /  B
)  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) )  /\  ( abs `  B
)  <_  y )
)  -> F.  )
)
8027, 79sylbird 235 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  ( ( 1  /  B )  -  0 ) )  <  ( 1  /  if ( 1  <_  y ,  y ,  1 ) ) )  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) )  -> F.  ) )
8119, 80mpand 675 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y )  -> F.  ) )
821, 81mtoi 178 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  -.  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  y
) )
8382nrexdv 2920 . 2  |-  ( ph  ->  -.  E. y  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B
)  <_  y )
)
8424, 2elo1mpt 13316 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  E. c  e.  RR  E. y  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) ) )
85 rexcom 3023 . . 3  |-  ( E. c  e.  RR  E. y  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( abs `  B )  <_  y
)  <->  E. y  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) )
8684, 85syl6bb 261 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  O(1)  <->  E. y  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( abs `  B )  <_  y ) ) )
8783, 86mtbird 301 1  |-  ( ph  ->  -.  ( x  e.  A  |->  B )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   F. wfal 1384    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    C_ wss 3476   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   ` cfv 5586  (class class class)co 6282   supcsup 7896   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489   +oocpnf 9621   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   RR+crp 11216   abscabs 13026    ~~> r crli 13267   O(1)co1 13268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-ico 11531  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-rlim 13271  df-o1 13272  df-lo1 13273
This theorem is referenced by:  logno1  22745
  Copyright terms: Public domain W3C validator