MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimmul Structured version   Unicode version

Theorem rlimmul 13478
Description: Limit of the product of two converging functions. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
rlimadd.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
rlimadd.5  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimadd.6  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
Assertion
Ref Expression
rlimmul  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  C
) )  ~~> r  ( D  x.  E ) )
Distinct variable groups:    x, A    x, D    ph, x    x, E
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem rlimmul
Dummy variables  w  v  y  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 rlimadd.5 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
31, 2rlimmptrcl 13441 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4 rlimadd.4 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
5 rlimadd.6 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
64, 5rlimmptrcl 13441 . 2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7 rlimcl 13337 . . 3  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
82, 7syl 16 . 2  |-  ( ph  ->  D  e.  CC )
9 rlimcl 13337 . . 3  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  E  e.  CC )
105, 9syl 16 . 2  |-  ( ph  ->  E  e.  CC )
11 ax-mulf 9589 . . 3  |-  x.  :
( CC  X.  CC )
--> CC
1211a1i 11 . 2  |-  ( ph  ->  x.  : ( CC 
X.  CC ) --> CC )
13 simpr 461 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
148adantr 465 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  D  e.  CC )
1510adantr 465 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E  e.  CC )
16 mulcn2 13429 . . 3  |-  ( ( y  e.  RR+  /\  D  e.  CC  /\  E  e.  CC )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  D ) )  <  z  /\  ( abs `  ( v  -  E ) )  <  w )  -> 
( abs `  (
( u  x.  v
)  -  ( D  x.  E ) ) )  <  y ) )
1713, 14, 15, 16syl3anc 1228 . 2  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  D ) )  <  z  /\  ( abs `  ( v  -  E ) )  <  w )  -> 
( abs `  (
( u  x.  v
)  -  ( D  x.  E ) ) )  <  y ) )
183, 6, 8, 10, 2, 5, 12, 17rlimcn2 13424 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  C
) )  ~~> r  ( D  x.  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1819   A.wral 2807   E.wrex 2808   class class class wbr 4456    |-> cmpt 4515    X. cxp 5006   -->wf 5590   ` cfv 5594  (class class class)co 6296   CCcc 9507    x. cmul 9514    < clt 9645    - cmin 9824   RR+crp 11245   abscabs 13078    ~~> r crli 13319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-seq 12110  df-exp 12169  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-rlim 13323
This theorem is referenced by:  rlimdiv  13479  caucvgr  13509  logexprlim  23625  dchrisum0lem1  23826  signsplypnf  28682
  Copyright terms: Public domain W3C validator