MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi2 Structured version   Unicode version

Theorem rlimi2 13348
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rlimi.1  |-  ( ph  ->  A. z  e.  A  B  e.  V )
rlimi.2  |-  ( ph  ->  R  e.  RR+ )
rlimi.3  |-  ( ph  ->  ( z  e.  A  |->  B )  ~~> r  C
)
rlimi.4  |-  ( ph  ->  D  e.  RR )
Assertion
Ref Expression
rlimi2  |-  ( ph  ->  E. y  e.  ( D [,) +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  R )
)
Distinct variable groups:    y, z, A    y, B    y, C, z    ph, y    y, R, z    y, D, z   
z, V
Allowed substitution hints:    ph( z)    B( z)    V( y)

Proof of Theorem rlimi2
StepHypRef Expression
1 rlimi.1 . . 3  |-  ( ph  ->  A. z  e.  A  B  e.  V )
2 rlimi.2 . . 3  |-  ( ph  ->  R  e.  RR+ )
3 rlimi.3 . . 3  |-  ( ph  ->  ( z  e.  A  |->  B )  ~~> r  C
)
41, 2, 3rlimi 13347 . 2  |-  ( ph  ->  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  R ) )
5 eqid 2457 . . . . . 6  |-  ( z  e.  A  |->  B )  =  ( z  e.  A  |->  B )
65fnmpt 5713 . . . . 5  |-  ( A. z  e.  A  B  e.  V  ->  ( z  e.  A  |->  B )  Fn  A )
7 fndm 5686 . . . . 5  |-  ( ( z  e.  A  |->  B )  Fn  A  ->  dom  ( z  e.  A  |->  B )  =  A )
81, 6, 73syl 20 . . . 4  |-  ( ph  ->  dom  ( z  e.  A  |->  B )  =  A )
9 rlimss 13336 . . . . 5  |-  ( ( z  e.  A  |->  B )  ~~> r  C  ->  dom  ( z  e.  A  |->  B )  C_  RR )
103, 9syl 16 . . . 4  |-  ( ph  ->  dom  ( z  e.  A  |->  B )  C_  RR )
118, 10eqsstr3d 3534 . . 3  |-  ( ph  ->  A  C_  RR )
12 rlimi.4 . . 3  |-  ( ph  ->  D  e.  RR )
13 rexico 13197 . . 3  |-  ( ( A  C_  RR  /\  D  e.  RR )  ->  ( E. y  e.  ( D [,) +oo ) A. z  e.  A  (
y  <_  z  ->  ( abs `  ( B  -  C ) )  <  R )  <->  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  R
) ) )
1411, 12, 13syl2anc 661 . 2  |-  ( ph  ->  ( E. y  e.  ( D [,) +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  R )  <->  E. y  e.  RR  A. z  e.  A  (
y  <_  z  ->  ( abs `  ( B  -  C ) )  <  R ) ) )
154, 14mpbird 232 1  |-  ( ph  ->  E. y  e.  ( D [,) +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  R )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808    C_ wss 3471   class class class wbr 4456    |-> cmpt 4515   dom cdm 5008    Fn wfn 5589   ` cfv 5594  (class class class)co 6296   RRcr 9508   +oocpnf 9642    < clt 9645    <_ cle 9646    - cmin 9824   RR+crp 11245   [,)cico 11556   abscabs 13078    ~~> r crli 13319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-pre-lttri 9583  ax-pre-lttrn 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-po 4809  df-so 4810  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-er 7329  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-ico 11560  df-rlim 13323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator