MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdiv Structured version   Unicode version

Theorem rlimdiv 13242
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
rlimadd.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
rlimadd.5  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimadd.6  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
rlimdiv.7  |-  ( ph  ->  E  =/=  0 )
rlimdiv.8  |-  ( (
ph  /\  x  e.  A )  ->  C  =/=  0 )
Assertion
Ref Expression
rlimdiv  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  ~~> r  ( D  /  E ) )
Distinct variable groups:    x, A    x, D    ph, x    x, E
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem rlimdiv
Dummy variables  w  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 rlimadd.5 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
31, 2rlimmptrcl 13204 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4 rlimadd.4 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
5 rlimadd.6 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
64, 5rlimmptrcl 13204 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7 rlimdiv.8 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  =/=  0 )
86, 7reccld 10212 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
1  /  C )  e.  CC )
9 eldifsn 4109 . . . . . . 7  |-  ( C  e.  ( CC  \  { 0 } )  <-> 
( C  e.  CC  /\  C  =/=  0 ) )
106, 7, 9sylanbrc 664 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  ( CC  \  {
0 } ) )
11 eqid 2454 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1210, 11fmptd 5977 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> ( CC  \  { 0 } ) )
13 rlimcl 13100 . . . . . . 7  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  E  e.  CC )
145, 13syl 16 . . . . . 6  |-  ( ph  ->  E  e.  CC )
15 rlimdiv.7 . . . . . 6  |-  ( ph  ->  E  =/=  0 )
16 eldifsn 4109 . . . . . 6  |-  ( E  e.  ( CC  \  { 0 } )  <-> 
( E  e.  CC  /\  E  =/=  0 ) )
1714, 15, 16sylanbrc 664 . . . . 5  |-  ( ph  ->  E  e.  ( CC 
\  { 0 } ) )
18 eldifsn 4109 . . . . . . . 8  |-  ( y  e.  ( CC  \  { 0 } )  <-> 
( y  e.  CC  /\  y  =/=  0 ) )
19 reccl 10113 . . . . . . . 8  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( 1  /  y
)  e.  CC )
2018, 19sylbi 195 . . . . . . 7  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( 1  / 
y )  e.  CC )
2120adantl 466 . . . . . 6  |-  ( (
ph  /\  y  e.  ( CC  \  { 0 } ) )  -> 
( 1  /  y
)  e.  CC )
22 eqid 2454 . . . . . 6  |-  ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) )  =  ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) )
2321, 22fmptd 5977 . . . . 5  |-  ( ph  ->  ( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) ) : ( CC  \  { 0 } ) --> CC )
24 eqid 2454 . . . . . . . 8  |-  ( if ( 1  <_  (
( abs `  E
)  x.  z ) ,  1 ,  ( ( abs `  E
)  x.  z ) )  x.  ( ( abs `  E )  /  2 ) )  =  ( if ( 1  <_  ( ( abs `  E )  x.  z ) ,  1 ,  ( ( abs `  E )  x.  z
) )  x.  (
( abs `  E
)  /  2 ) )
2524reccn2 13193 . . . . . . 7  |-  ( ( E  e.  ( CC 
\  { 0 } )  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
2617, 25sylan 471 . . . . . 6  |-  ( (
ph  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
27 oveq2 6209 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  (
1  /  y )  =  ( 1  / 
v ) )
28 ovex 6226 . . . . . . . . . . . . . 14  |-  ( 1  /  v )  e. 
_V
2927, 22, 28fvmpt 5884 . . . . . . . . . . . . 13  |-  ( v  e.  ( CC  \  { 0 } )  ->  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  v
)  =  ( 1  /  v ) )
30 oveq2 6209 . . . . . . . . . . . . . . 15  |-  ( y  =  E  ->  (
1  /  y )  =  ( 1  /  E ) )
31 ovex 6226 . . . . . . . . . . . . . . 15  |-  ( 1  /  E )  e. 
_V
3230, 22, 31fvmpt 5884 . . . . . . . . . . . . . 14  |-  ( E  e.  ( CC  \  { 0 } )  ->  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
)  =  ( 1  /  E ) )
3317, 32syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  E )  =  ( 1  /  E ) )
3429, 33oveqan12rd 6221 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  v
)  -  ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  E ) )  =  ( ( 1  / 
v )  -  (
1  /  E ) ) )
3534fveq2d 5804 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  =  ( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) ) )
3635breq1d 4411 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z  <->  ( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
3736imbi2d 316 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( ( abs `  ( v  -  E
) )  <  w  ->  ( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z )  <->  ( ( abs `  ( v  -  E ) )  < 
w  ->  ( abs `  ( ( 1  / 
v )  -  (
1  /  E ) ) )  <  z
) ) )
3837ralbidva 2844 . . . . . . . 8  |-  ( ph  ->  ( A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z )  <->  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) ) )
3938rexbidv 2868 . . . . . . 7  |-  ( ph  ->  ( E. w  e.  RR+  A. v  e.  ( CC  \  { 0 } ) ( ( abs `  ( v  -  E ) )  <  w  ->  ( abs `  ( ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  v )  -  (
( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) ) `
 E ) ) )  <  z )  <->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) ) )
4039biimpar 485 . . . . . 6  |-  ( (
ph  /\  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z ) )
4126, 40syldan 470 . . . . 5  |-  ( (
ph  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z ) )
4212, 17, 5, 23, 41rlimcn1 13185 . . . 4  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) )  o.  ( x  e.  A  |->  C ) )  ~~> r  ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  E ) )
43 eqidd 2455 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
44 eqidd 2455 . . . . 5  |-  ( ph  ->  ( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) )  =  ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) )
45 oveq2 6209 . . . . 5  |-  ( y  =  C  ->  (
1  /  y )  =  ( 1  /  C ) )
4610, 43, 44, 45fmptco 5986 . . . 4  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) )  o.  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( 1  /  C ) ) )
4742, 46, 333brtr3d 4430 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( 1  /  C
) )  ~~> r  ( 1  /  E ) )
483, 8, 2, 47rlimmul 13241 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  (
1  /  C ) ) )  ~~> r  ( D  x.  ( 1  /  E ) ) )
493, 6, 7divrecd 10222 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  /  C )  =  ( B  x.  (
1  /  C ) ) )
5049mpteq2dva 4487 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  =  ( x  e.  A  |->  ( B  x.  ( 1  /  C ) ) ) )
51 rlimcl 13100 . . . 4  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
522, 51syl 16 . . 3  |-  ( ph  ->  D  e.  CC )
5352, 14, 15divrecd 10222 . 2  |-  ( ph  ->  ( D  /  E
)  =  ( D  x.  ( 1  /  E ) ) )
5448, 50, 533brtr4d 4431 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  ~~> r  ( D  /  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800    \ cdif 3434   ifcif 3900   {csn 3986   class class class wbr 4401    |-> cmpt 4459    o. ccom 4953   ` cfv 5527  (class class class)co 6201   CCcc 9392   0cc0 9394   1c1 9395    x. cmul 9399    < clt 9530    <_ cle 9531    - cmin 9707    / cdiv 10105   2c2 10483   RR+crp 11103   abscabs 12842    ~~> r crli 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471  ax-pre-sup 9472  ax-mulf 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-2nd 6689  df-recs 6943  df-rdg 6977  df-er 7212  df-pm 7328  df-en 7422  df-dom 7423  df-sdom 7424  df-sup 7803  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-div 10106  df-nn 10435  df-2 10492  df-3 10493  df-n0 10692  df-z 10759  df-uz 10974  df-rp 11104  df-seq 11925  df-exp 11984  df-cj 12707  df-re 12708  df-im 12709  df-sqr 12843  df-abs 12844  df-rlim 13086
This theorem is referenced by:  logexprlim  22698  chebbnd2  22860  chto1lb  22861  pnt2  22996  pnt  22997
  Copyright terms: Public domain W3C validator