MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdiv Structured version   Unicode version

Theorem rlimdiv 13550
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
rlimadd.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
rlimadd.5  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimadd.6  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
rlimdiv.7  |-  ( ph  ->  E  =/=  0 )
rlimdiv.8  |-  ( (
ph  /\  x  e.  A )  ->  C  =/=  0 )
Assertion
Ref Expression
rlimdiv  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  ~~> r  ( D  /  E ) )
Distinct variable groups:    x, A    x, D    ph, x    x, E
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem rlimdiv
Dummy variables  w  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 rlimadd.5 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
31, 2rlimmptrcl 13512 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4 rlimadd.4 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
5 rlimadd.6 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
64, 5rlimmptrcl 13512 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7 rlimdiv.8 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  =/=  0 )
86, 7reccld 10309 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
1  /  C )  e.  CC )
9 eldifsn 4141 . . . . . . 7  |-  ( C  e.  ( CC  \  { 0 } )  <-> 
( C  e.  CC  /\  C  =/=  0 ) )
106, 7, 9sylanbrc 662 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  ( CC  \  {
0 } ) )
11 eqid 2454 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1210, 11fmptd 6031 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> ( CC  \  { 0 } ) )
13 rlimcl 13408 . . . . . . 7  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  E  e.  CC )
145, 13syl 16 . . . . . 6  |-  ( ph  ->  E  e.  CC )
15 rlimdiv.7 . . . . . 6  |-  ( ph  ->  E  =/=  0 )
16 eldifsn 4141 . . . . . 6  |-  ( E  e.  ( CC  \  { 0 } )  <-> 
( E  e.  CC  /\  E  =/=  0 ) )
1714, 15, 16sylanbrc 662 . . . . 5  |-  ( ph  ->  E  e.  ( CC 
\  { 0 } ) )
18 eldifsn 4141 . . . . . . . 8  |-  ( y  e.  ( CC  \  { 0 } )  <-> 
( y  e.  CC  /\  y  =/=  0 ) )
19 reccl 10210 . . . . . . . 8  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( 1  /  y
)  e.  CC )
2018, 19sylbi 195 . . . . . . 7  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( 1  / 
y )  e.  CC )
2120adantl 464 . . . . . 6  |-  ( (
ph  /\  y  e.  ( CC  \  { 0 } ) )  -> 
( 1  /  y
)  e.  CC )
22 eqid 2454 . . . . . 6  |-  ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) )  =  ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) )
2321, 22fmptd 6031 . . . . 5  |-  ( ph  ->  ( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) ) : ( CC  \  { 0 } ) --> CC )
24 eqid 2454 . . . . . . . 8  |-  ( if ( 1  <_  (
( abs `  E
)  x.  z ) ,  1 ,  ( ( abs `  E
)  x.  z ) )  x.  ( ( abs `  E )  /  2 ) )  =  ( if ( 1  <_  ( ( abs `  E )  x.  z ) ,  1 ,  ( ( abs `  E )  x.  z
) )  x.  (
( abs `  E
)  /  2 ) )
2524reccn2 13501 . . . . . . 7  |-  ( ( E  e.  ( CC 
\  { 0 } )  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
2617, 25sylan 469 . . . . . 6  |-  ( (
ph  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
27 oveq2 6278 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  (
1  /  y )  =  ( 1  / 
v ) )
28 ovex 6298 . . . . . . . . . . . . . 14  |-  ( 1  /  v )  e. 
_V
2927, 22, 28fvmpt 5931 . . . . . . . . . . . . 13  |-  ( v  e.  ( CC  \  { 0 } )  ->  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  v
)  =  ( 1  /  v ) )
30 oveq2 6278 . . . . . . . . . . . . . . 15  |-  ( y  =  E  ->  (
1  /  y )  =  ( 1  /  E ) )
31 ovex 6298 . . . . . . . . . . . . . . 15  |-  ( 1  /  E )  e. 
_V
3230, 22, 31fvmpt 5931 . . . . . . . . . . . . . 14  |-  ( E  e.  ( CC  \  { 0 } )  ->  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
)  =  ( 1  /  E ) )
3317, 32syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  E )  =  ( 1  /  E ) )
3429, 33oveqan12rd 6290 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  v
)  -  ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  E ) )  =  ( ( 1  / 
v )  -  (
1  /  E ) ) )
3534fveq2d 5852 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  =  ( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) ) )
3635breq1d 4449 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z  <->  ( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
3736imbi2d 314 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( ( abs `  ( v  -  E
) )  <  w  ->  ( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z )  <->  ( ( abs `  ( v  -  E ) )  < 
w  ->  ( abs `  ( ( 1  / 
v )  -  (
1  /  E ) ) )  <  z
) ) )
3837ralbidva 2890 . . . . . . . 8  |-  ( ph  ->  ( A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z )  <->  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) ) )
3938rexbidv 2965 . . . . . . 7  |-  ( ph  ->  ( E. w  e.  RR+  A. v  e.  ( CC  \  { 0 } ) ( ( abs `  ( v  -  E ) )  <  w  ->  ( abs `  ( ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  v )  -  (
( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) ) `
 E ) ) )  <  z )  <->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) ) )
4039biimpar 483 . . . . . 6  |-  ( (
ph  /\  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z ) )
4126, 40syldan 468 . . . . 5  |-  ( (
ph  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z ) )
4212, 17, 5, 23, 41rlimcn1 13493 . . . 4  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) )  o.  ( x  e.  A  |->  C ) )  ~~> r  ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  E ) )
43 eqidd 2455 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
44 eqidd 2455 . . . . 5  |-  ( ph  ->  ( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) )  =  ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) )
45 oveq2 6278 . . . . 5  |-  ( y  =  C  ->  (
1  /  y )  =  ( 1  /  C ) )
4610, 43, 44, 45fmptco 6040 . . . 4  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) )  o.  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( 1  /  C ) ) )
4742, 46, 333brtr3d 4468 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( 1  /  C
) )  ~~> r  ( 1  /  E ) )
483, 8, 2, 47rlimmul 13549 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  (
1  /  C ) ) )  ~~> r  ( D  x.  ( 1  /  E ) ) )
493, 6, 7divrecd 10319 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  /  C )  =  ( B  x.  (
1  /  C ) ) )
5049mpteq2dva 4525 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  =  ( x  e.  A  |->  ( B  x.  ( 1  /  C ) ) ) )
51 rlimcl 13408 . . . 4  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
522, 51syl 16 . . 3  |-  ( ph  ->  D  e.  CC )
5352, 14, 15divrecd 10319 . 2  |-  ( ph  ->  ( D  /  E
)  =  ( D  x.  ( 1  /  E ) ) )
5448, 50, 533brtr4d 4469 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  ~~> r  ( D  /  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805    \ cdif 3458   ifcif 3929   {csn 4016   class class class wbr 4439    |-> cmpt 4497    o. ccom 4992   ` cfv 5570  (class class class)co 6270   CCcc 9479   0cc0 9481   1c1 9482    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9796    / cdiv 10202   2c2 10581   RR+crp 11221   abscabs 13149    ~~> r crli 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-seq 12090  df-exp 12149  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-rlim 13394
This theorem is referenced by:  logexprlim  23698  chebbnd2  23860  chto1lb  23861  pnt2  23996  pnt  23997
  Copyright terms: Public domain W3C validator