MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcxp Unicode version

Theorem rlimcxp 20765
Description: Any power to a positive exponent of a converging sequence also converges. (Contributed by Mario Carneiro, 18-Sep-2014.)
Hypotheses
Ref Expression
rlimcxp.1  |-  ( (
ph  /\  n  e.  A )  ->  B  e.  V )
rlimcxp.2  |-  ( ph  ->  ( n  e.  A  |->  B )  ~~> r  0 )
rlimcxp.3  |-  ( ph  ->  C  e.  RR+ )
Assertion
Ref Expression
rlimcxp  |-  ( ph  ->  ( n  e.  A  |->  ( B  ^ c  C ) )  ~~> r  0 )
Distinct variable groups:    A, n    C, n    ph, n
Allowed substitution hints:    B( n)    V( n)

Proof of Theorem rlimcxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcxp.2 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  A  |->  B )  ~~> r  0 )
2 rlimf 12250 . . . . . . . . 9  |-  ( ( n  e.  A  |->  B )  ~~> r  0  -> 
( n  e.  A  |->  B ) : dom  ( n  e.  A  |->  B ) --> CC )
31, 2syl 16 . . . . . . . 8  |-  ( ph  ->  ( n  e.  A  |->  B ) : dom  ( n  e.  A  |->  B ) --> CC )
4 rlimcxp.1 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  A )  ->  B  e.  V )
54ralrimiva 2749 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  A  B  e.  V )
6 dmmptg 5326 . . . . . . . . . 10  |-  ( A. n  e.  A  B  e.  V  ->  dom  (
n  e.  A  |->  B )  =  A )
75, 6syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( n  e.  A  |->  B )  =  A )
87feq2d 5540 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  A  |->  B ) : dom  ( n  e.  A  |->  B ) --> CC  <->  ( n  e.  A  |->  B ) : A --> CC ) )
93, 8mpbid 202 . . . . . . 7  |-  ( ph  ->  ( n  e.  A  |->  B ) : A --> CC )
10 eqid 2404 . . . . . . . 8  |-  ( n  e.  A  |->  B )  =  ( n  e.  A  |->  B )
1110fmpt 5849 . . . . . . 7  |-  ( A. n  e.  A  B  e.  CC  <->  ( n  e.  A  |->  B ) : A --> CC )
129, 11sylibr 204 . . . . . 6  |-  ( ph  ->  A. n  e.  A  B  e.  CC )
1312adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  A. n  e.  A  B  e.  CC )
14 simpr 448 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
15 rlimcxp.3 . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
1615adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  RR+ )
1716rprecred 10615 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  C )  e.  RR )
1814, 17rpcxpcld 20574 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  ^ c  ( 1  /  C ) )  e.  RR+ )
191adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( n  e.  A  |->  B )  ~~> r  0 )
2013, 18, 19rlimi 12262 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) ) ) )
214, 1rlimmptrcl 12356 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  A )  ->  B  e.  CC )
2221adantlr 696 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  B  e.  CC )
2322abscld 12193 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  ( abs `  B )  e.  RR )
2422absge0d 12201 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  0  <_  ( abs `  B
) )
2518adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
x  ^ c  ( 1  /  C ) )  e.  RR+ )
2625rpred 10604 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
x  ^ c  ( 1  /  C ) )  e.  RR )
2725rpge0d 10608 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  0  <_  ( x  ^ c 
( 1  /  C
) ) )
2815ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  C  e.  RR+ )
2923, 24, 26, 27, 28cxplt2d 20570 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( abs `  B
)  <  ( x  ^ c  ( 1  /  C ) )  <-> 
( ( abs `  B
)  ^ c  C
)  <  ( (
x  ^ c  ( 1  /  C ) )  ^ c  C
) ) )
3022subid1d 9356 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  ( B  -  0 )  =  B )
3130fveq2d 5691 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  ( abs `  ( B  - 
0 ) )  =  ( abs `  B
) )
3231breq1d 4182 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) )  <-> 
( abs `  B
)  <  ( x  ^ c  ( 1  /  C ) ) ) )
3328rpred 10604 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  C  e.  RR )
34 abscxp2 20537 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  C  e.  RR )  ->  ( abs `  ( B  ^ c  C ) )  =  ( ( abs `  B )  ^ c  C ) )
3522, 33, 34syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  ( abs `  ( B  ^ c  C ) )  =  ( ( abs `  B
)  ^ c  C
) )
3628rpcnd 10606 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  C  e.  CC )
3728rpne0d 10609 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  C  =/=  0 )
3836, 37recid2d 9742 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( 1  /  C
)  x.  C )  =  1 )
3938oveq2d 6056 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
x  ^ c  ( ( 1  /  C
)  x.  C ) )  =  ( x  ^ c  1 ) )
40 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  x  e.  RR+ )
4117adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
1  /  C )  e.  RR )
4240, 41, 36cxpmuld 20578 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
x  ^ c  ( ( 1  /  C
)  x.  C ) )  =  ( ( x  ^ c  ( 1  /  C ) )  ^ c  C
) )
4340rpcnd 10606 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  x  e.  CC )
4443cxp1d 20550 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
x  ^ c  1 )  =  x )
4539, 42, 443eqtr3rd 2445 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  x  =  ( ( x  ^ c  ( 1  /  C ) )  ^ c  C ) )
4635, 45breq12d 4185 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( abs `  ( B  ^ c  C ) )  <  x  <->  ( ( abs `  B )  ^ c  C )  <  (
( x  ^ c 
( 1  /  C
) )  ^ c  C ) ) )
4729, 32, 463bitr4d 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) )  <-> 
( abs `  ( B  ^ c  C ) )  <  x ) )
4847biimpd 199 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) )  ->  ( abs `  ( B  ^ c  C ) )  <  x ) )
4948imim2d 50 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  A )  ->  (
( y  <_  n  ->  ( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) ) )  ->  ( y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  < 
x ) ) )
5049ralimdva 2744 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. n  e.  A  (
y  <_  n  ->  ( abs `  ( B  -  0 ) )  <  ( x  ^ c  ( 1  /  C ) ) )  ->  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  <  x ) ) )
5150reximdv 2777 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  -  0 ) )  <  (
x  ^ c  ( 1  /  C ) ) )  ->  E. y  e.  RR  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  <  x ) ) )
5220, 51mpd 15 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  <  x ) )
5352ralrimiva 2749 . 2  |-  ( ph  ->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  A  (
y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  <  x ) )
5415rpcnd 10606 . . . . . 6  |-  ( ph  ->  C  e.  CC )
5554adantr 452 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  C  e.  CC )
5621, 55cxpcld 20552 . . . 4  |-  ( (
ph  /\  n  e.  A )  ->  ( B  ^ c  C )  e.  CC )
5756ralrimiva 2749 . . 3  |-  ( ph  ->  A. n  e.  A  ( B  ^ c  C )  e.  CC )
58 rlimss 12251 . . . . 5  |-  ( ( n  e.  A  |->  B )  ~~> r  0  ->  dom  ( n  e.  A  |->  B )  C_  RR )
591, 58syl 16 . . . 4  |-  ( ph  ->  dom  ( n  e.  A  |->  B )  C_  RR )
607, 59eqsstr3d 3343 . . 3  |-  ( ph  ->  A  C_  RR )
6157, 60rlim0 12257 . 2  |-  ( ph  ->  ( ( n  e.  A  |->  ( B  ^ c  C ) )  ~~> r  0  <->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  A  ( y  <_  n  ->  ( abs `  ( B  ^ c  C ) )  <  x ) ) )
6253, 61mpbird 224 1  |-  ( ph  ->  ( n  e.  A  |->  ( B  ^ c  C ) )  ~~> r  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   dom cdm 4837   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   RR+crp 10568   abscabs 11994    ~~> r crli 12234    ^ c ccxp 20406
This theorem is referenced by:  cxp2lim  20768  cxploglim2  20770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cxp 20408
  Copyright terms: Public domain W3C validator