MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimconst Structured version   Unicode version

Theorem rlimconst 13518
Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimconst  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
x  e.  A  |->  B )  ~~> r  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem rlimconst
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 9628 . . . 4  |-  0  e.  RR
2 simpllr 763 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  B  e.  CC )
32subidd 9957 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  ( B  -  B )  =  0 )
43fveq2d 5855 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  ( abs `  ( B  -  B
) )  =  ( abs `  0 ) )
5 abs0 13269 . . . . . . . 8  |-  ( abs `  0 )  =  0
64, 5syl6eq 2461 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  ( abs `  ( B  -  B
) )  =  0 )
7 rpgt0 11278 . . . . . . . 8  |-  ( y  e.  RR+  ->  0  < 
y )
87ad2antlr 727 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  0  <  y )
96, 8eqbrtrd 4417 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  ( abs `  ( B  -  B
) )  <  y
)
109a1d 26 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  /\  x  e.  A
)  ->  ( 0  <_  x  ->  ( abs `  ( B  -  B ) )  < 
y ) )
1110ralrimiva 2820 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  ->  A. x  e.  A  ( 0  <_  x  ->  ( abs `  ( B  -  B )
)  <  y )
)
12 breq1 4400 . . . . . . 7  |-  ( z  =  0  ->  (
z  <_  x  <->  0  <_  x ) )
1312imbi1d 317 . . . . . 6  |-  ( z  =  0  ->  (
( z  <_  x  ->  ( abs `  ( B  -  B )
)  <  y )  <->  ( 0  <_  x  ->  ( abs `  ( B  -  B ) )  <  y ) ) )
1413ralbidv 2845 . . . . 5  |-  ( z  =  0  ->  ( A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  B )
)  <  y )  <->  A. x  e.  A  ( 0  <_  x  ->  ( abs `  ( B  -  B ) )  <  y ) ) )
1514rspcev 3162 . . . 4  |-  ( ( 0  e.  RR  /\  A. x  e.  A  ( 0  <_  x  ->  ( abs `  ( B  -  B ) )  <  y ) )  ->  E. z  e.  RR  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  B ) )  <  y ) )
161, 11, 15sylancr 663 . . 3  |-  ( ( ( A  C_  RR  /\  B  e.  CC )  /\  y  e.  RR+ )  ->  E. z  e.  RR  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  B ) )  <  y ) )
1716ralrimiva 2820 . 2  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  A. y  e.  RR+  E. z  e.  RR  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  B )
)  <  y )
)
18 simplr 756 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  CC )  /\  x  e.  A
)  ->  B  e.  CC )
1918ralrimiva 2820 . . 3  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  A. x  e.  A  B  e.  CC )
20 simpl 457 . . 3  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  A  C_  RR )
21 simpr 461 . . 3  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  B  e.  CC )
2219, 20, 21rlim2 13470 . 2  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
( x  e.  A  |->  B )  ~~> r  B  <->  A. y  e.  RR+  E. z  e.  RR  A. x  e.  A  ( z  <_  x  ->  ( abs `  ( B  -  B )
)  <  y )
) )
2317, 22mpbird 234 1  |-  ( ( A  C_  RR  /\  B  e.  CC )  ->  (
x  e.  A  |->  B )  ~~> r  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1407    e. wcel 1844   A.wral 2756   E.wrex 2757    C_ wss 3416   class class class wbr 4397    |-> cmpt 4455   ` cfv 5571  (class class class)co 6280   CCcc 9522   RRcr 9523   0cc0 9524    < clt 9660    <_ cle 9661    - cmin 9843   RR+crp 11267   abscabs 13218    ~~> r crli 13459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-er 7350  df-pm 7462  df-en 7557  df-dom 7558  df-sdom 7559  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-2 10637  df-n0 10839  df-z 10908  df-uz 11130  df-rp 11268  df-seq 12154  df-exp 12213  df-cj 13083  df-re 13084  df-im 13085  df-sqrt 13219  df-abs 13220  df-rlim 13463
This theorem is referenced by:  o1const  13593  rlimneg  13620  caucvgr  13649  fsumrlim  13778  dvfsumrlimge0  22725  dvfsumrlim2  22727  logexprlim  23883  chebbnd2  24045  chto1lb  24046  chpchtlim  24047  dchrisum0lem1  24084  selberglem2  24114  signsplypnf  29026
  Copyright terms: Public domain W3C validator