MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp Structured version   Unicode version

Theorem rlimcnp 22243
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function  S ( y )  =  R ( 1  /  y ) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp.a  |-  ( ph  ->  A  C_  ( 0 [,) +oo ) )
rlimcnp.0  |-  ( ph  ->  0  e.  A )
rlimcnp.b  |-  ( ph  ->  B  C_  RR+ )
rlimcnp.r  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  CC )
rlimcnp.d  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  A  <->  ( 1  /  x )  e.  B
) )
rlimcnp.c  |-  ( x  =  0  ->  R  =  C )
rlimcnp.s  |-  ( x  =  ( 1  / 
y )  ->  R  =  S )
rlimcnp.j  |-  J  =  ( TopOpen ` fld )
rlimcnp.k  |-  K  =  ( Jt  A )
Assertion
Ref Expression
rlimcnp  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  R )  e.  ( ( K  CnP  J ) `
 0 ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    ph, x, y   
y, R    x, S
Allowed substitution hints:    R( x)    S( y)    J( x, y)    K( x, y)

Proof of Theorem rlimcnp
Dummy variables  w  r  z  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpreccl 11001 . . . . . . . . 9  |-  ( r  e.  RR+  ->  ( 1  /  r )  e.  RR+ )
21adantl 463 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( 1  /  r )  e.  RR+ )
3 rpreccl 11001 . . . . . . . . . 10  |-  ( t  e.  RR+  ->  ( 1  /  t )  e.  RR+ )
43adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( 1  /  t )  e.  RR+ )
5 rpcnne0 10995 . . . . . . . . . . . 12  |-  ( t  e.  RR+  ->  ( t  e.  CC  /\  t  =/=  0 ) )
65adantl 463 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( t  e.  CC  /\  t  =/=  0 ) )
7 recrec 10015 . . . . . . . . . . 11  |-  ( ( t  e.  CC  /\  t  =/=  0 )  -> 
( 1  /  (
1  /  t ) )  =  t )
86, 7syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( 1  /  ( 1  / 
t ) )  =  t )
98eqcomd 2438 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  t  =  ( 1  /  (
1  /  t ) ) )
10 oveq2 6088 . . . . . . . . . . 11  |-  ( r  =  ( 1  / 
t )  ->  (
1  /  r )  =  ( 1  / 
( 1  /  t
) ) )
1110eqeq2d 2444 . . . . . . . . . 10  |-  ( r  =  ( 1  / 
t )  ->  (
t  =  ( 1  /  r )  <->  t  =  ( 1  /  (
1  /  t ) ) ) )
1211rspcev 3062 . . . . . . . . 9  |-  ( ( ( 1  /  t
)  e.  RR+  /\  t  =  ( 1  / 
( 1  /  t
) ) )  ->  E. r  e.  RR+  t  =  ( 1  / 
r ) )
134, 9, 12syl2anc 654 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  E. r  e.  RR+  t  =  ( 1  /  r ) )
14 simpr 458 . . . . . . . . . . 11  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  t  =  ( 1  / 
r ) )
1514breq1d 4290 . . . . . . . . . 10  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  (
t  <  y  <->  ( 1  /  r )  < 
y ) )
1615imbi1d 317 . . . . . . . . 9  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  (
( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  ( ( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
1716ralbidv 2725 . . . . . . . 8  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  ( A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. y  e.  B  ( ( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
182, 13, 17rexxfrd 4495 . . . . . . 7  |-  ( ph  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  E. r  e.  RR+  A. y  e.  B  ( (
1  /  r )  <  y  ->  ( abs `  ( S  -  C ) )  < 
z ) ) )
1918adantr 462 . . . . . 6  |-  ( (
ph  /\  z  e.  RR+ )  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  <->  E. r  e.  RR+  A. y  e.  B  ( ( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
20 simplr 747 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  r  e.  RR+ )
21 rlimcnp.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  C_  RR+ )
2221sselda 3344 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  RR+ )
2322adantlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  y  e.  RR+ )
24 elrp 10980 . . . . . . . . . . . . . 14  |-  ( r  e.  RR+  <->  ( r  e.  RR  /\  0  < 
r ) )
25 elrp 10980 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  <->  ( y  e.  RR  /\  0  < 
y ) )
26 ltrec1 10206 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  RR  /\  0  <  r )  /\  ( y  e.  RR  /\  0  < 
y ) )  -> 
( ( 1  / 
r )  <  y  <->  ( 1  /  y )  <  r ) )
2724, 25, 26syl2anb 476 . . . . . . . . . . . . 13  |-  ( ( r  e.  RR+  /\  y  e.  RR+ )  ->  (
( 1  /  r
)  <  y  <->  ( 1  /  y )  < 
r ) )
2820, 23, 27syl2anc 654 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  (
( 1  /  r
)  <  y  <->  ( 1  /  y )  < 
r ) )
2928imbi1d 317 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  (
( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
3029ralbidva 2721 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( A. y  e.  B  (
( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z )  <->  A. y  e.  B  ( (
1  /  y )  <  r  ->  ( abs `  ( S  -  C ) )  < 
z ) ) )
3130adantlr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. y  e.  B  ( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. y  e.  B  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
32 rpcn 10986 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR+  ->  y  e.  CC )
33 rpne0 10993 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR+  ->  y  =/=  0 )
3432, 33recrecd 10091 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR+  ->  ( 1  /  ( 1  / 
y ) )  =  y )
3522, 34syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  ( 1  /  y ) )  =  y )
36 simpr 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
3735, 36eqeltrd 2507 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  ( 1  /  y ) )  e.  B )
38 rpreccl 11001 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  RR+ )
3922, 38syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  e.  RR+ )
40 rlimcnp.d . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  A  <->  ( 1  /  x )  e.  B
) )
4140ralrimiva 2789 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  RR+  ( x  e.  A  <->  ( 1  /  x )  e.  B ) )
4241adantr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  A. x  e.  RR+  ( x  e.  A  <->  ( 1  /  x )  e.  B
) )
43 eleq1 2493 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 1  / 
y )  ->  (
x  e.  A  <->  ( 1  /  y )  e.  A ) )
44 oveq2 6088 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( 1  / 
y )  ->  (
1  /  x )  =  ( 1  / 
( 1  /  y
) ) )
4544eleq1d 2499 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 1  / 
y )  ->  (
( 1  /  x
)  e.  B  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) )
4643, 45bibi12d 321 . . . . . . . . . . . . . . 15  |-  ( x  =  ( 1  / 
y )  ->  (
( x  e.  A  <->  ( 1  /  x )  e.  B )  <->  ( (
1  /  y )  e.  A  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) ) )
4746rspcv 3058 . . . . . . . . . . . . . 14  |-  ( ( 1  /  y )  e.  RR+  ->  ( A. x  e.  RR+  ( x  e.  A  <->  ( 1  /  x )  e.  B )  ->  (
( 1  /  y
)  e.  A  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) ) )
4839, 42, 47sylc 60 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  B )  ->  (
( 1  /  y
)  e.  A  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) )
4937, 48mpbird 232 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  e.  A )
5039rpne0d 11019 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  =/=  0 )
51 eldifsn 3988 . . . . . . . . . . . 12  |-  ( ( 1  /  y )  e.  ( A  \  { 0 } )  <-> 
( ( 1  / 
y )  e.  A  /\  ( 1  /  y
)  =/=  0 ) )
5249, 50, 51sylanbrc 657 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  e.  ( A  \  { 0 } ) )
53 eldifi 3466 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  \  { 0 } )  ->  x  e.  A
)
5453adantl 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  A )
55 0re 9373 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
56 pnfxr 11079 . . . . . . . . . . . . . . . . 17  |- +oo  e.  RR*
57 icossre 11363 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
0 [,) +oo )  C_  RR )
5855, 56, 57mp2an 665 . . . . . . . . . . . . . . . 16  |-  ( 0 [,) +oo )  C_  RR
59 rlimcnp.a . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  C_  ( 0 [,) +oo ) )
6059ssdifssd 3482 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  \  {
0 } )  C_  ( 0 [,) +oo ) )
6160sselda 3344 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  ( 0 [,) +oo ) )
6258, 61sseldi 3342 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  RR )
63 elico2 11346 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  < +oo ) ) )
6455, 56, 63mp2an 665 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  < +oo ) )
6564simp2bi 997 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 0 [,) +oo )  ->  0  <_  x )
6661, 65syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
0  <_  x )
67 eldifsni 3989 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( A  \  { 0 } )  ->  x  =/=  0
)
6867adantl 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  =/=  0 )
6962, 66, 68ne0gt0d 9498 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
0  <  x )
7062, 69elrpd 11012 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  RR+ )
7170, 40syldan 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
( x  e.  A  <->  ( 1  /  x )  e.  B ) )
7254, 71mpbid 210 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
( 1  /  x
)  e.  B )
73 rpcn 10986 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  CC )
74 rpne0 10993 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  =/=  0 )
7573, 74recrecd 10091 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( 1  /  ( 1  /  x ) )  =  x )
7670, 75syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
( 1  /  (
1  /  x ) )  =  x )
7776eqcomd 2438 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  =  ( 1  /  ( 1  /  x ) ) )
78 oveq2 6088 . . . . . . . . . . . . . 14  |-  ( y  =  ( 1  /  x )  ->  (
1  /  y )  =  ( 1  / 
( 1  /  x
) ) )
7978eqeq2d 2444 . . . . . . . . . . . . 13  |-  ( y  =  ( 1  /  x )  ->  (
x  =  ( 1  /  y )  <->  x  =  ( 1  /  (
1  /  x ) ) ) )
8079rspcev 3062 . . . . . . . . . . . 12  |-  ( ( ( 1  /  x
)  e.  B  /\  x  =  ( 1  /  ( 1  /  x ) ) )  ->  E. y  e.  B  x  =  ( 1  /  y ) )
8172, 77, 80syl2anc 654 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  E. y  e.  B  x  =  ( 1  /  y ) )
82 breq1 4283 . . . . . . . . . . . . 13  |-  ( x  =  ( 1  / 
y )  ->  (
x  <  r  <->  ( 1  /  y )  < 
r ) )
83 rlimcnp.s . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 1  / 
y )  ->  R  =  S )
8483oveq1d 6095 . . . . . . . . . . . . . . 15  |-  ( x  =  ( 1  / 
y )  ->  ( R  -  C )  =  ( S  -  C ) )
8584fveq2d 5683 . . . . . . . . . . . . . 14  |-  ( x  =  ( 1  / 
y )  ->  ( abs `  ( R  -  C ) )  =  ( abs `  ( S  -  C )
) )
8685breq1d 4290 . . . . . . . . . . . . 13  |-  ( x  =  ( 1  / 
y )  ->  (
( abs `  ( R  -  C )
)  <  z  <->  ( abs `  ( S  -  C
) )  <  z
) )
8782, 86imbi12d 320 . . . . . . . . . . . 12  |-  ( x  =  ( 1  / 
y )  ->  (
( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  <->  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
8887adantl 463 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  ( 1  /  y
) )  ->  (
( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  <->  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
8952, 81, 88ralxfrd 4494 . . . . . . . . . 10  |-  ( ph  ->  ( A. x  e.  ( A  \  {
0 } ) ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )  <->  A. y  e.  B  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
9089ad2antrr 718 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  ( A  \  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
)  <->  A. y  e.  B  ( ( 1  / 
y )  <  r  ->  ( abs `  ( S  -  C )
)  <  z )
) )
9131, 90bitr4d 256 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. y  e.  B  ( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. x  e.  ( A 
\  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
92 elsni 3890 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  { 0 }  ->  x  =  0 )
9392adantl 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  x  =  0 )
94 rlimcnp.c . . . . . . . . . . . . . . . . . 18  |-  ( x  =  0  ->  R  =  C )
9593, 94syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  R  =  C )
9695oveq1d 6095 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( R  -  C )  =  ( C  -  C ) )
97 rlimcnp.0 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  0  e.  A )
98 rlimcnp.r . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  CC )
9998ralrimiva 2789 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. x  e.  A  R  e.  CC )
10094eleq1d 2499 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  ( R  e.  CC  <->  C  e.  CC ) )
101100rspcv 3058 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  e.  A  ->  ( A. x  e.  A  R  e.  CC  ->  C  e.  CC ) )
10297, 99, 101sylc 60 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  C  e.  CC )
103102subidd 9694 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( C  -  C
)  =  0 )
104103ad2antrr 718 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( C  -  C )  =  0 )
10596, 104eqtrd 2465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( R  -  C )  =  0 )
106105abs00bd 12763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( abs `  ( R  -  C )
)  =  0 )
107 rpgt0 10989 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR+  ->  0  < 
z )
108107ad2antlr 719 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  0  <  z
)
109106, 108eqbrtrd 4300 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( abs `  ( R  -  C )
)  <  z )
110109a1d 25 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) )
111110ralrimiva 2789 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  RR+ )  ->  A. x  e.  { 0 }  (
x  <  r  ->  ( abs `  ( R  -  C ) )  <  z ) )
112111adantr 462 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  A. x  e.  { 0 }  (
x  <  r  ->  ( abs `  ( R  -  C ) )  <  z ) )
113112biantrud 504 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  ( A  \  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
)  <->  ( A. x  e.  ( A  \  {
0 } ) ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )  /\  A. x  e.  {
0 }  ( x  <  r  ->  ( abs `  ( R  -  C ) )  < 
z ) ) ) )
114 ralunb 3525 . . . . . . . . 9  |-  ( A. x  e.  ( ( A  \  { 0 } )  u.  { 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C ) )  < 
z )  <->  ( A. x  e.  ( A  \  { 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  /\  A. x  e.  {
0 }  ( x  <  r  ->  ( abs `  ( R  -  C ) )  < 
z ) ) )
115113, 114syl6bbr 263 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  ( A  \  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
)  <->  A. x  e.  ( ( A  \  {
0 } )  u. 
{ 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )
) )
116 undif1 3742 . . . . . . . . . 10  |-  ( ( A  \  { 0 } )  u.  {
0 } )  =  ( A  u.  {
0 } )
11797ad2antrr 718 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  0  e.  A )
118117snssd 4006 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  { 0 }  C_  A )
119 ssequn2 3517 . . . . . . . . . . 11  |-  ( { 0 }  C_  A  <->  ( A  u.  { 0 } )  =  A )
120118, 119sylib 196 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A  u.  { 0 } )  =  A )
121116, 120syl5eq 2477 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  (
( A  \  {
0 } )  u. 
{ 0 } )  =  A )
122121raleqdv 2913 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  (
( A  \  {
0 } )  u. 
{ 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  <->  A. x  e.  A  ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )
) )
12391, 115, 1223bitrd 279 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. y  e.  B  ( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. x  e.  A  ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )
) )
124123rexbidva 2722 . . . . . 6  |-  ( (
ph  /\  z  e.  RR+ )  ->  ( E. r  e.  RR+  A. y  e.  B  ( (
1  /  r )  <  y  ->  ( abs `  ( S  -  C ) )  < 
z )  <->  E. r  e.  RR+  A. x  e.  A  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
12519, 124bitrd 253 . . . . 5  |-  ( (
ph  /\  z  e.  RR+ )  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  <->  E. r  e.  RR+  A. x  e.  A  ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )
) )
126125ralbidva 2721 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )  <->  A. z  e.  RR+  E. r  e.  RR+  A. x  e.  A  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
127 nfv 1672 . . . . . . . . 9  |-  F/ x
( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r
128 nffvmpt1 5687 . . . . . . . . . . 11  |-  F/_ x
( ( x  e.  A  |->  R ) `  w )
129 nfcv 2569 . . . . . . . . . . 11  |-  F/_ x
( abs  o.  -  )
130 nffvmpt1 5687 . . . . . . . . . . 11  |-  F/_ x
( ( x  e.  A  |->  R ) ` 
0 )
131128, 129, 130nfov 6103 . . . . . . . . . 10  |-  F/_ x
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )
132 nfcv 2569 . . . . . . . . . 10  |-  F/_ x  <
133 nfcv 2569 . . . . . . . . . 10  |-  F/_ x
z
134131, 132, 133nfbr 4324 . . . . . . . . 9  |-  F/ x
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z
135127, 134nfim 1851 . . . . . . . 8  |-  F/ x
( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )
136 nfv 1672 . . . . . . . 8  |-  F/ w
( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )
137 oveq1 6087 . . . . . . . . . 10  |-  ( w  =  x  ->  (
w ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  ( x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 ) )
138137breq1d 4290 . . . . . . . . 9  |-  ( w  =  x  ->  (
( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  <->  ( x
( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r
) )
139 fveq2 5679 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
( x  e.  A  |->  R ) `  w
)  =  ( ( x  e.  A  |->  R ) `  x ) )
140139oveq1d 6095 . . . . . . . . . 10  |-  ( w  =  x  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  =  ( ( ( x  e.  A  |->  R ) `  x ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) ) )
141140breq1d 4290 . . . . . . . . 9  |-  ( w  =  x  ->  (
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z  <->  ( ( ( x  e.  A  |->  R ) `  x ) ( abs  o.  -  ) ( ( x  e.  A  |->  R ) `
 0 ) )  <  z ) )
142138, 141imbi12d 320 . . . . . . . 8  |-  ( w  =  x  ->  (
( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  ( (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) )
143135, 136, 142cbvral 2933 . . . . . . 7  |-  ( A. w  e.  A  (
( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
)  <->  A. x  e.  A  ( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) )
144 simpr 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
14597adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  0  e.  A )
146144, 145ovresd 6220 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  ( x ( abs  o.  -  ) 0 ) )
14759, 58syl6ss 3356 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
148 ax-resscn 9326 . . . . . . . . . . . . . . 15  |-  RR  C_  CC
149147, 148syl6ss 3356 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  CC )
150149sselda 3344 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  CC )
151 0cnd 9366 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  0  e.  CC )
152 eqid 2433 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
153152cnmetdval 20191 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  0  e.  CC )  ->  ( x ( abs 
o.  -  ) 0 )  =  ( abs `  ( x  -  0 ) ) )
154150, 151, 153syl2anc 654 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( abs  o.  -  ) 0 )  =  ( abs `  (
x  -  0 ) ) )
155150subid1d 9695 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
x  -  0 )  =  x )
156155fveq2d 5683 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( x  - 
0 ) )  =  ( abs `  x
) )
157146, 154, 1563eqtrd 2469 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  ( abs `  x ) )
158147sselda 3344 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
15959sselda 3344 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  ( 0 [,) +oo ) )
160159, 65syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  x )
161158, 160absidd 12892 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  x )  =  x )
162157, 161eqtrd 2465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  x )
163162breq1d 4290 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  <->  x  <  r ) )
164 eqid 2433 . . . . . . . . . . . . . 14  |-  ( x  e.  A  |->  R )  =  ( x  e.  A  |->  R )
165164fvmpt2 5769 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  R  e.  CC )  ->  ( ( x  e.  A  |->  R ) `  x )  =  R )
166144, 98, 165syl2anc 654 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  R ) `  x
)  =  R )
167102adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
16894, 164fvmptg 5760 . . . . . . . . . . . . 13  |-  ( ( 0  e.  A  /\  C  e.  CC )  ->  ( ( x  e.  A  |->  R ) ` 
0 )  =  C )
169145, 167, 168syl2anc 654 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  R ) `  0
)  =  C )
170166, 169oveq12d 6098 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  =  ( R ( abs  o.  -  ) C ) )
171152cnmetdval 20191 . . . . . . . . . . . 12  |-  ( ( R  e.  CC  /\  C  e.  CC )  ->  ( R ( abs 
o.  -  ) C
)  =  ( abs `  ( R  -  C
) ) )
17298, 167, 171syl2anc 654 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( R ( abs  o.  -  ) C )  =  ( abs `  ( R  -  C )
) )
173170, 172eqtrd 2465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  =  ( abs `  ( R  -  C ) ) )
174173breq1d 4290 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z  <->  ( abs `  ( R  -  C )
)  <  z )
)
175163, 174imbi12d 320 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
176175ralbidva 2721 . . . . . . 7  |-  ( ph  ->  ( A. x  e.  A  ( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  A. x  e.  A  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
177143, 176syl5bb 257 . . . . . 6  |-  ( ph  ->  ( A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  A. x  e.  A  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
178177rexbidv 2726 . . . . 5  |-  ( ph  ->  ( E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  E. r  e.  RR+  A. x  e.  A  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
179178ralbidv 2725 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
)  <->  A. z  e.  RR+  E. r  e.  RR+  A. x  e.  A  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
18098, 164fmptd 5855 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  R ) : A --> CC )
181180biantrurd 505 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
)  <->  ( ( x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) ) )
182126, 179, 1813bitr2d 281 . . 3  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )  <->  ( ( x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
) ) ) )
18399adantr 462 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  A. x  e.  A  R  e.  CC )
18483eleq1d 2499 . . . . . . . . 9  |-  ( x  =  ( 1  / 
y )  ->  ( R  e.  CC  <->  S  e.  CC ) )
185184rspcv 3058 . . . . . . . 8  |-  ( ( 1  /  y )  e.  A  ->  ( A. x  e.  A  R  e.  CC  ->  S  e.  CC ) )
18649, 183, 185sylc 60 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  S  e.  CC )
187186ralrimiva 2789 . . . . . 6  |-  ( ph  ->  A. y  e.  B  S  e.  CC )
188 rpssre 10988 . . . . . . 7  |-  RR+  C_  RR
18921, 188syl6ss 3356 . . . . . 6  |-  ( ph  ->  B  C_  RR )
190 1red 9388 . . . . . 6  |-  ( ph  ->  1  e.  RR )
191187, 189, 102, 190rlim3 12959 . . . . 5  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  A. z  e.  RR+  E. t  e.  ( 1 [,) +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )
) )
192 0xr 9417 . . . . . . . . . 10  |-  0  e.  RR*
193 0lt1 9849 . . . . . . . . . 10  |-  0  <  1
194 df-ioo 11291 . . . . . . . . . . 11  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
195 df-ico 11293 . . . . . . . . . . 11  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
196 xrltletr 11118 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  w  e. 
RR* )  ->  (
( 0  <  1  /\  1  <_  w )  ->  0  <  w
) )
197194, 195, 196ixxss1 11305 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  0  <  1 )  ->  (
1 [,) +oo )  C_  ( 0 (,) +oo ) )
198192, 193, 197mp2an 665 . . . . . . . . 9  |-  ( 1 [,) +oo )  C_  ( 0 (,) +oo )
199 ioorp 11360 . . . . . . . . 9  |-  ( 0 (,) +oo )  = 
RR+
200198, 199sseqtri 3376 . . . . . . . 8  |-  ( 1 [,) +oo )  C_  RR+
201 ssrexv 3405 . . . . . . . 8  |-  ( ( 1 [,) +oo )  C_  RR+  ->  ( E. t  e.  ( 1 [,) +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
202200, 201ax-mp 5 . . . . . . 7  |-  ( E. t  e.  ( 1 [,) +oo ) A. y  e.  B  (
t  <_  y  ->  ( abs `  ( S  -  C ) )  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C
) )  <  z
) )
203 simplr 747 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  t  e.  RR+ )
204188, 203sseldi 3342 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  t  e.  RR )
205189adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  RR+ )  ->  B  C_  RR )
206205sselda 3344 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  y  e.  RR )
207 ltle 9450 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  y  e.  RR )  ->  ( t  <  y  ->  t  <_  y )
)
208204, 206, 207syl2anc 654 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  (
t  <  y  ->  t  <_  y ) )
209208imim1d 75 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  (
( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )
) )
210209ralimdva 2784 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( A. y  e.  B  (
t  <_  y  ->  ( abs `  ( S  -  C ) )  <  z )  ->  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )
) )
211210reximdva 2818 . . . . . . 7  |-  ( ph  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )
) )
212202, 211syl5 32 . . . . . 6  |-  ( ph  ->  ( E. t  e.  ( 1 [,) +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )
) )
213212ralimdv 2785 . . . . 5  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  ( 1 [,) +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
214191, 213sylbid 215 . . . 4  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  ->  A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
215 ssrexv 3405 . . . . . . 7  |-  ( RR+  C_  RR  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  ->  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
216188, 215ax-mp 5 . . . . . 6  |-  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  ->  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) )
217216ralimi 2781 . . . . 5  |-  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
)  ->  A. z  e.  RR+  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) )
218187, 189, 102rlim2lt 12958 . . . . 5  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  A. z  e.  RR+  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
219217, 218syl5ibr 221 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )  ->  ( y  e.  B  |->  S )  ~~> r  C
) )
220214, 219impbid 191 . . 3  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
221 cnxmet 20193 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
222 xmetres2 19777 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
223221, 149, 222sylancr 656 . . . 4  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
224221a1i 11 . . . 4  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
225 eqid 2433 . . . . 5  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
226 rlimcnp.j . . . . . 6  |-  J  =  ( TopOpen ` fld )
227226cnfldtopn 20202 . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
228225, 227metcnp2 19958 . . . 4  |-  ( ( ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A )  /\  ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  A )  ->  (
( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  (
( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
J ) `  0
)  <->  ( ( x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) ) )
229223, 224, 97, 228syl3anc 1211 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  CnP  J ) `
 0 )  <->  ( (
x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) ) )
230182, 220, 2293bitr4d 285 . 2  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
J ) `  0
) ) )
231 rlimcnp.k . . . . . 6  |-  K  =  ( Jt  A )
232 eqid 2433 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
233232, 227, 225metrest 19940 . . . . . . 7  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( Jt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
234221, 149, 233sylancr 656 . . . . . 6  |-  ( ph  ->  ( Jt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
235231, 234syl5eq 2477 . . . . 5  |-  ( ph  ->  K  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
236235oveq1d 6095 . . . 4  |-  ( ph  ->  ( K  CnP  J
)  =  ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  J ) )
237236fveq1d 5681 . . 3  |-  ( ph  ->  ( ( K  CnP  J ) `  0 )  =  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  J ) `
 0 ) )
238237eleq2d 2500 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  R )  e.  ( ( K  CnP  J ) `  0 )  <-> 
( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  (
( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
J ) `  0
) ) )
239230, 238bitr4d 256 1  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  R )  e.  ( ( K  CnP  J ) `
 0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705   E.wrex 2706    \ cdif 3313    u. cun 3314    C_ wss 3316   {csn 3865   class class class wbr 4280    e. cmpt 4338    X. cxp 4825    |` cres 4829    o. ccom 4831   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9267   RRcr 9268   0cc0 9269   1c1 9270   +oocpnf 9402   RR*cxr 9404    < clt 9405    <_ cle 9406    - cmin 9582    / cdiv 9980   RR+crp 10978   (,)cioo 11287   [,)cico 11289   abscabs 12706    ~~> r crli 12946   ↾t crest 14341   TopOpenctopn 14342   *Metcxmt 17644   MetOpencmopn 17649  ℂfldccnfld 17661    CnP ccnp 18670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-9 10374  df-10 10375  df-n0 10567  df-z 10634  df-dec 10743  df-uz 10849  df-q 10941  df-rp 10979  df-xneg 11076  df-xadd 11077  df-xmul 11078  df-ioo 11291  df-ico 11293  df-fz 11424  df-seq 11790  df-exp 11849  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-rlim 12950  df-struct 14158  df-ndx 14159  df-slot 14160  df-base 14161  df-plusg 14233  df-mulr 14234  df-starv 14235  df-tset 14239  df-ple 14240  df-ds 14242  df-unif 14243  df-rest 14343  df-topn 14344  df-topgen 14364  df-psmet 17652  df-xmet 17653  df-met 17654  df-bl 17655  df-mopn 17656  df-cnfld 17662  df-top 18344  df-bases 18346  df-topon 18347  df-cnp 18673
This theorem is referenced by:  rlimcnp2  22244
  Copyright terms: Public domain W3C validator