MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp Structured version   Visualization version   Unicode version

Theorem rlimcnp 23970
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function  S ( y )  =  R ( 1  /  y ) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp.a  |-  ( ph  ->  A  C_  ( 0 [,) +oo ) )
rlimcnp.0  |-  ( ph  ->  0  e.  A )
rlimcnp.b  |-  ( ph  ->  B  C_  RR+ )
rlimcnp.r  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  CC )
rlimcnp.d  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  A  <->  ( 1  /  x )  e.  B
) )
rlimcnp.c  |-  ( x  =  0  ->  R  =  C )
rlimcnp.s  |-  ( x  =  ( 1  / 
y )  ->  R  =  S )
rlimcnp.j  |-  J  =  ( TopOpen ` fld )
rlimcnp.k  |-  K  =  ( Jt  A )
Assertion
Ref Expression
rlimcnp  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  R )  e.  ( ( K  CnP  J ) `
 0 ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    ph, x, y   
y, R    x, S
Allowed substitution hints:    R( x)    S( y)    J( x, y)    K( x, y)

Proof of Theorem rlimcnp
Dummy variables  w  r  z  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpreccl 11349 . . . . . . . . 9  |-  ( r  e.  RR+  ->  ( 1  /  r )  e.  RR+ )
21adantl 473 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( 1  /  r )  e.  RR+ )
3 rpreccl 11349 . . . . . . . . . 10  |-  ( t  e.  RR+  ->  ( 1  /  t )  e.  RR+ )
43adantl 473 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( 1  /  t )  e.  RR+ )
5 rpcnne0 11342 . . . . . . . . . . . 12  |-  ( t  e.  RR+  ->  ( t  e.  CC  /\  t  =/=  0 ) )
65adantl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( t  e.  CC  /\  t  =/=  0 ) )
7 recrec 10326 . . . . . . . . . . 11  |-  ( ( t  e.  CC  /\  t  =/=  0 )  -> 
( 1  /  (
1  /  t ) )  =  t )
86, 7syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( 1  /  ( 1  / 
t ) )  =  t )
98eqcomd 2477 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  t  =  ( 1  /  (
1  /  t ) ) )
10 oveq2 6316 . . . . . . . . . . 11  |-  ( r  =  ( 1  / 
t )  ->  (
1  /  r )  =  ( 1  / 
( 1  /  t
) ) )
1110eqeq2d 2481 . . . . . . . . . 10  |-  ( r  =  ( 1  / 
t )  ->  (
t  =  ( 1  /  r )  <->  t  =  ( 1  /  (
1  /  t ) ) ) )
1211rspcev 3136 . . . . . . . . 9  |-  ( ( ( 1  /  t
)  e.  RR+  /\  t  =  ( 1  / 
( 1  /  t
) ) )  ->  E. r  e.  RR+  t  =  ( 1  / 
r ) )
134, 9, 12syl2anc 673 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  E. r  e.  RR+  t  =  ( 1  /  r ) )
14 simpr 468 . . . . . . . . . . 11  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  t  =  ( 1  / 
r ) )
1514breq1d 4405 . . . . . . . . . 10  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  (
t  <  y  <->  ( 1  /  r )  < 
y ) )
1615imbi1d 324 . . . . . . . . 9  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  (
( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  ( ( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
1716ralbidv 2829 . . . . . . . 8  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  ( A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. y  e.  B  ( ( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
182, 13, 17rexxfrd 4613 . . . . . . 7  |-  ( ph  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  E. r  e.  RR+  A. y  e.  B  ( (
1  /  r )  <  y  ->  ( abs `  ( S  -  C ) )  < 
z ) ) )
1918adantr 472 . . . . . 6  |-  ( (
ph  /\  z  e.  RR+ )  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  <->  E. r  e.  RR+  A. y  e.  B  ( ( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
20 simplr 770 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  r  e.  RR+ )
21 rlimcnp.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  C_  RR+ )
2221sselda 3418 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  RR+ )
2322adantlr 729 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  y  e.  RR+ )
24 elrp 11327 . . . . . . . . . . . . . 14  |-  ( r  e.  RR+  <->  ( r  e.  RR  /\  0  < 
r ) )
25 elrp 11327 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  <->  ( y  e.  RR  /\  0  < 
y ) )
26 ltrec1 10515 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  RR  /\  0  <  r )  /\  ( y  e.  RR  /\  0  < 
y ) )  -> 
( ( 1  / 
r )  <  y  <->  ( 1  /  y )  <  r ) )
2724, 25, 26syl2anb 487 . . . . . . . . . . . . 13  |-  ( ( r  e.  RR+  /\  y  e.  RR+ )  ->  (
( 1  /  r
)  <  y  <->  ( 1  /  y )  < 
r ) )
2820, 23, 27syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  (
( 1  /  r
)  <  y  <->  ( 1  /  y )  < 
r ) )
2928imbi1d 324 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  (
( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
3029ralbidva 2828 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( A. y  e.  B  (
( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z )  <->  A. y  e.  B  ( (
1  /  y )  <  r  ->  ( abs `  ( S  -  C ) )  < 
z ) ) )
3130adantlr 729 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. y  e.  B  ( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. y  e.  B  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
32 rpcn 11333 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR+  ->  y  e.  CC )
33 rpne0 11340 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR+  ->  y  =/=  0 )
3432, 33recrecd 10402 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR+  ->  ( 1  /  ( 1  / 
y ) )  =  y )
3522, 34syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  ( 1  /  y ) )  =  y )
36 simpr 468 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
3735, 36eqeltrd 2549 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  ( 1  /  y ) )  e.  B )
38 rpreccl 11349 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  RR+ )
3922, 38syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  e.  RR+ )
40 rlimcnp.d . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  A  <->  ( 1  /  x )  e.  B
) )
4140ralrimiva 2809 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  RR+  ( x  e.  A  <->  ( 1  /  x )  e.  B ) )
4241adantr 472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  A. x  e.  RR+  ( x  e.  A  <->  ( 1  /  x )  e.  B
) )
43 eleq1 2537 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 1  / 
y )  ->  (
x  e.  A  <->  ( 1  /  y )  e.  A ) )
44 oveq2 6316 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( 1  / 
y )  ->  (
1  /  x )  =  ( 1  / 
( 1  /  y
) ) )
4544eleq1d 2533 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 1  / 
y )  ->  (
( 1  /  x
)  e.  B  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) )
4643, 45bibi12d 328 . . . . . . . . . . . . . . 15  |-  ( x  =  ( 1  / 
y )  ->  (
( x  e.  A  <->  ( 1  /  x )  e.  B )  <->  ( (
1  /  y )  e.  A  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) ) )
4746rspcv 3132 . . . . . . . . . . . . . 14  |-  ( ( 1  /  y )  e.  RR+  ->  ( A. x  e.  RR+  ( x  e.  A  <->  ( 1  /  x )  e.  B )  ->  (
( 1  /  y
)  e.  A  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) ) )
4839, 42, 47sylc 61 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  B )  ->  (
( 1  /  y
)  e.  A  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) )
4937, 48mpbird 240 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  e.  A )
5039rpne0d 11369 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  =/=  0 )
51 eldifsn 4088 . . . . . . . . . . . 12  |-  ( ( 1  /  y )  e.  ( A  \  { 0 } )  <-> 
( ( 1  / 
y )  e.  A  /\  ( 1  /  y
)  =/=  0 ) )
5249, 50, 51sylanbrc 677 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  e.  ( A  \  { 0 } ) )
53 eldifi 3544 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  \  { 0 } )  ->  x  e.  A
)
5453adantl 473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  A )
55 rge0ssre 11766 . . . . . . . . . . . . . . . 16  |-  ( 0 [,) +oo )  C_  RR
56 rlimcnp.a . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  C_  ( 0 [,) +oo ) )
5756ssdifssd 3560 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  \  {
0 } )  C_  ( 0 [,) +oo ) )
5857sselda 3418 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  ( 0 [,) +oo ) )
5955, 58sseldi 3416 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  RR )
60 0re 9661 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
61 pnfxr 11435 . . . . . . . . . . . . . . . . . . 19  |- +oo  e.  RR*
62 elico2 11723 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  < +oo ) ) )
6360, 61, 62mp2an 686 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  < +oo ) )
6463simp2bi 1046 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 0 [,) +oo )  ->  0  <_  x )
6558, 64syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
0  <_  x )
66 eldifsni 4089 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( A  \  { 0 } )  ->  x  =/=  0
)
6766adantl 473 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  =/=  0 )
6859, 65, 67ne0gt0d 9789 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
0  <  x )
6959, 68elrpd 11361 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  RR+ )
7069, 40syldan 478 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
( x  e.  A  <->  ( 1  /  x )  e.  B ) )
7154, 70mpbid 215 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
( 1  /  x
)  e.  B )
72 rpcn 11333 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  CC )
73 rpne0 11340 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  =/=  0 )
7472, 73recrecd 10402 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( 1  /  ( 1  /  x ) )  =  x )
7569, 74syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
( 1  /  (
1  /  x ) )  =  x )
7675eqcomd 2477 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  =  ( 1  /  ( 1  /  x ) ) )
77 oveq2 6316 . . . . . . . . . . . . . 14  |-  ( y  =  ( 1  /  x )  ->  (
1  /  y )  =  ( 1  / 
( 1  /  x
) ) )
7877eqeq2d 2481 . . . . . . . . . . . . 13  |-  ( y  =  ( 1  /  x )  ->  (
x  =  ( 1  /  y )  <->  x  =  ( 1  /  (
1  /  x ) ) ) )
7978rspcev 3136 . . . . . . . . . . . 12  |-  ( ( ( 1  /  x
)  e.  B  /\  x  =  ( 1  /  ( 1  /  x ) ) )  ->  E. y  e.  B  x  =  ( 1  /  y ) )
8071, 76, 79syl2anc 673 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  E. y  e.  B  x  =  ( 1  /  y ) )
81 breq1 4398 . . . . . . . . . . . . 13  |-  ( x  =  ( 1  / 
y )  ->  (
x  <  r  <->  ( 1  /  y )  < 
r ) )
82 rlimcnp.s . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 1  / 
y )  ->  R  =  S )
8382oveq1d 6323 . . . . . . . . . . . . . . 15  |-  ( x  =  ( 1  / 
y )  ->  ( R  -  C )  =  ( S  -  C ) )
8483fveq2d 5883 . . . . . . . . . . . . . 14  |-  ( x  =  ( 1  / 
y )  ->  ( abs `  ( R  -  C ) )  =  ( abs `  ( S  -  C )
) )
8584breq1d 4405 . . . . . . . . . . . . 13  |-  ( x  =  ( 1  / 
y )  ->  (
( abs `  ( R  -  C )
)  <  z  <->  ( abs `  ( S  -  C
) )  <  z
) )
8681, 85imbi12d 327 . . . . . . . . . . . 12  |-  ( x  =  ( 1  / 
y )  ->  (
( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  <->  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
8786adantl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  ( 1  /  y
) )  ->  (
( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  <->  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
8852, 80, 87ralxfrd 4612 . . . . . . . . . 10  |-  ( ph  ->  ( A. x  e.  ( A  \  {
0 } ) ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )  <->  A. y  e.  B  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
8988ad2antrr 740 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  ( A  \  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
)  <->  A. y  e.  B  ( ( 1  / 
y )  <  r  ->  ( abs `  ( S  -  C )
)  <  z )
) )
9031, 89bitr4d 264 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. y  e.  B  ( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. x  e.  ( A 
\  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
91 elsni 3985 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  { 0 }  ->  x  =  0 )
9291adantl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  x  =  0 )
93 rlimcnp.c . . . . . . . . . . . . . . . . . 18  |-  ( x  =  0  ->  R  =  C )
9492, 93syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  R  =  C )
9594oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( R  -  C )  =  ( C  -  C ) )
96 rlimcnp.0 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  0  e.  A )
97 rlimcnp.r . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  CC )
9897ralrimiva 2809 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. x  e.  A  R  e.  CC )
9993eleq1d 2533 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  ( R  e.  CC  <->  C  e.  CC ) )
10099rspcv 3132 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  e.  A  ->  ( A. x  e.  A  R  e.  CC  ->  C  e.  CC ) )
10196, 98, 100sylc 61 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  C  e.  CC )
102101subidd 9993 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( C  -  C
)  =  0 )
103102ad2antrr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( C  -  C )  =  0 )
10495, 103eqtrd 2505 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( R  -  C )  =  0 )
105104abs00bd 13431 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( abs `  ( R  -  C )
)  =  0 )
106 rpgt0 11336 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR+  ->  0  < 
z )
107106ad2antlr 741 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  0  <  z
)
108105, 107eqbrtrd 4416 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( abs `  ( R  -  C )
)  <  z )
109108a1d 25 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) )
110109ralrimiva 2809 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  RR+ )  ->  A. x  e.  { 0 }  (
x  <  r  ->  ( abs `  ( R  -  C ) )  <  z ) )
111110adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  A. x  e.  { 0 }  (
x  <  r  ->  ( abs `  ( R  -  C ) )  <  z ) )
112111biantrud 515 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  ( A  \  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
)  <->  ( A. x  e.  ( A  \  {
0 } ) ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )  /\  A. x  e.  {
0 }  ( x  <  r  ->  ( abs `  ( R  -  C ) )  < 
z ) ) ) )
113 ralunb 3606 . . . . . . . . 9  |-  ( A. x  e.  ( ( A  \  { 0 } )  u.  { 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C ) )  < 
z )  <->  ( A. x  e.  ( A  \  { 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  /\  A. x  e.  {
0 }  ( x  <  r  ->  ( abs `  ( R  -  C ) )  < 
z ) ) )
114112, 113syl6bbr 271 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  ( A  \  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
)  <->  A. x  e.  ( ( A  \  {
0 } )  u. 
{ 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )
) )
115 undif1 3833 . . . . . . . . . 10  |-  ( ( A  \  { 0 } )  u.  {
0 } )  =  ( A  u.  {
0 } )
11696ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  0  e.  A )
117116snssd 4108 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  { 0 }  C_  A )
118 ssequn2 3598 . . . . . . . . . . 11  |-  ( { 0 }  C_  A  <->  ( A  u.  { 0 } )  =  A )
119117, 118sylib 201 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A  u.  { 0 } )  =  A )
120115, 119syl5eq 2517 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  (
( A  \  {
0 } )  u. 
{ 0 } )  =  A )
121120raleqdv 2979 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  (
( A  \  {
0 } )  u. 
{ 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  <->  A. x  e.  A  ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )
) )
12290, 114, 1213bitrd 287 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. y  e.  B  ( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. x  e.  A  ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )
) )
123122rexbidva 2889 . . . . . 6  |-  ( (
ph  /\  z  e.  RR+ )  ->  ( E. r  e.  RR+  A. y  e.  B  ( (
1  /  r )  <  y  ->  ( abs `  ( S  -  C ) )  < 
z )  <->  E. r  e.  RR+  A. x  e.  A  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
12419, 123bitrd 261 . . . . 5  |-  ( (
ph  /\  z  e.  RR+ )  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  <->  E. r  e.  RR+  A. x  e.  A  ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )
) )
125124ralbidva 2828 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )  <->  A. z  e.  RR+  E. r  e.  RR+  A. x  e.  A  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
126 nfv 1769 . . . . . . . . 9  |-  F/ x
( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r
127 nffvmpt1 5887 . . . . . . . . . . 11  |-  F/_ x
( ( x  e.  A  |->  R ) `  w )
128 nfcv 2612 . . . . . . . . . . 11  |-  F/_ x
( abs  o.  -  )
129 nffvmpt1 5887 . . . . . . . . . . 11  |-  F/_ x
( ( x  e.  A  |->  R ) ` 
0 )
130127, 128, 129nfov 6334 . . . . . . . . . 10  |-  F/_ x
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )
131 nfcv 2612 . . . . . . . . . 10  |-  F/_ x  <
132 nfcv 2612 . . . . . . . . . 10  |-  F/_ x
z
133130, 131, 132nfbr 4440 . . . . . . . . 9  |-  F/ x
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z
134126, 133nfim 2023 . . . . . . . 8  |-  F/ x
( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )
135 nfv 1769 . . . . . . . 8  |-  F/ w
( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )
136 oveq1 6315 . . . . . . . . . 10  |-  ( w  =  x  ->  (
w ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  ( x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 ) )
137136breq1d 4405 . . . . . . . . 9  |-  ( w  =  x  ->  (
( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  <->  ( x
( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r
) )
138 fveq2 5879 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
( x  e.  A  |->  R ) `  w
)  =  ( ( x  e.  A  |->  R ) `  x ) )
139138oveq1d 6323 . . . . . . . . . 10  |-  ( w  =  x  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  =  ( ( ( x  e.  A  |->  R ) `  x ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) ) )
140139breq1d 4405 . . . . . . . . 9  |-  ( w  =  x  ->  (
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z  <->  ( ( ( x  e.  A  |->  R ) `  x ) ( abs  o.  -  ) ( ( x  e.  A  |->  R ) `
 0 ) )  <  z ) )
141137, 140imbi12d 327 . . . . . . . 8  |-  ( w  =  x  ->  (
( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  ( (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) )
142134, 135, 141cbvral 3001 . . . . . . 7  |-  ( A. w  e.  A  (
( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
)  <->  A. x  e.  A  ( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) )
143 simpr 468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
14496adantr 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  0  e.  A )
145143, 144ovresd 6456 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  ( x ( abs  o.  -  ) 0 ) )
14656, 55syl6ss 3430 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
147 ax-resscn 9614 . . . . . . . . . . . . . . 15  |-  RR  C_  CC
148146, 147syl6ss 3430 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  CC )
149148sselda 3418 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  CC )
150 0cnd 9654 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  0  e.  CC )
151 eqid 2471 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
152151cnmetdval 21869 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  0  e.  CC )  ->  ( x ( abs 
o.  -  ) 0 )  =  ( abs `  ( x  -  0 ) ) )
153149, 150, 152syl2anc 673 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( abs  o.  -  ) 0 )  =  ( abs `  (
x  -  0 ) ) )
154149subid1d 9994 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
x  -  0 )  =  x )
155154fveq2d 5883 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( x  - 
0 ) )  =  ( abs `  x
) )
156145, 153, 1553eqtrd 2509 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  ( abs `  x ) )
157146sselda 3418 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
15856sselda 3418 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  ( 0 [,) +oo ) )
159158, 64syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  x )
160157, 159absidd 13561 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  x )  =  x )
161156, 160eqtrd 2505 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  x )
162161breq1d 4405 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  <->  x  <  r ) )
163 eqid 2471 . . . . . . . . . . . . . 14  |-  ( x  e.  A  |->  R )  =  ( x  e.  A  |->  R )
164163fvmpt2 5972 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  R  e.  CC )  ->  ( ( x  e.  A  |->  R ) `  x )  =  R )
165143, 97, 164syl2anc 673 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  R ) `  x
)  =  R )
166101adantr 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
16793, 163fvmptg 5961 . . . . . . . . . . . . 13  |-  ( ( 0  e.  A  /\  C  e.  CC )  ->  ( ( x  e.  A  |->  R ) ` 
0 )  =  C )
168144, 166, 167syl2anc 673 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  R ) `  0
)  =  C )
169165, 168oveq12d 6326 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  =  ( R ( abs  o.  -  ) C ) )
170151cnmetdval 21869 . . . . . . . . . . . 12  |-  ( ( R  e.  CC  /\  C  e.  CC )  ->  ( R ( abs 
o.  -  ) C
)  =  ( abs `  ( R  -  C
) ) )
17197, 166, 170syl2anc 673 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( R ( abs  o.  -  ) C )  =  ( abs `  ( R  -  C )
) )
172169, 171eqtrd 2505 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  =  ( abs `  ( R  -  C ) ) )
173172breq1d 4405 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z  <->  ( abs `  ( R  -  C )
)  <  z )
)
174162, 173imbi12d 327 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
175174ralbidva 2828 . . . . . . 7  |-  ( ph  ->  ( A. x  e.  A  ( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  A. x  e.  A  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
176142, 175syl5bb 265 . . . . . 6  |-  ( ph  ->  ( A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  A. x  e.  A  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
177176rexbidv 2892 . . . . 5  |-  ( ph  ->  ( E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  E. r  e.  RR+  A. x  e.  A  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
178177ralbidv 2829 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
)  <->  A. z  e.  RR+  E. r  e.  RR+  A. x  e.  A  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
17997, 163fmptd 6061 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  R ) : A --> CC )
180179biantrurd 516 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
)  <->  ( ( x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) ) )
181125, 178, 1803bitr2d 289 . . 3  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )  <->  ( ( x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
) ) ) )
18298adantr 472 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  A. x  e.  A  R  e.  CC )
18382eleq1d 2533 . . . . . . . . 9  |-  ( x  =  ( 1  / 
y )  ->  ( R  e.  CC  <->  S  e.  CC ) )
184183rspcv 3132 . . . . . . . 8  |-  ( ( 1  /  y )  e.  A  ->  ( A. x  e.  A  R  e.  CC  ->  S  e.  CC ) )
18549, 182, 184sylc 61 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  S  e.  CC )
186185ralrimiva 2809 . . . . . 6  |-  ( ph  ->  A. y  e.  B  S  e.  CC )
187 rpssre 11335 . . . . . . 7  |-  RR+  C_  RR
18821, 187syl6ss 3430 . . . . . 6  |-  ( ph  ->  B  C_  RR )
189 1red 9676 . . . . . 6  |-  ( ph  ->  1  e.  RR )
190186, 188, 101, 189rlim3 13639 . . . . 5  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  A. z  e.  RR+  E. t  e.  ( 1 [,) +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )
) )
191 0xr 9705 . . . . . . . . . 10  |-  0  e.  RR*
192 0lt1 10157 . . . . . . . . . 10  |-  0  <  1
193 df-ioo 11664 . . . . . . . . . . 11  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
194 df-ico 11666 . . . . . . . . . . 11  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
195 xrltletr 11477 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  w  e. 
RR* )  ->  (
( 0  <  1  /\  1  <_  w )  ->  0  <  w
) )
196193, 194, 195ixxss1 11678 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  0  <  1 )  ->  (
1 [,) +oo )  C_  ( 0 (,) +oo ) )
197191, 192, 196mp2an 686 . . . . . . . . 9  |-  ( 1 [,) +oo )  C_  ( 0 (,) +oo )
198 ioorp 11737 . . . . . . . . 9  |-  ( 0 (,) +oo )  = 
RR+
199197, 198sseqtri 3450 . . . . . . . 8  |-  ( 1 [,) +oo )  C_  RR+
200 ssrexv 3480 . . . . . . . 8  |-  ( ( 1 [,) +oo )  C_  RR+  ->  ( E. t  e.  ( 1 [,) +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
201199, 200ax-mp 5 . . . . . . 7  |-  ( E. t  e.  ( 1 [,) +oo ) A. y  e.  B  (
t  <_  y  ->  ( abs `  ( S  -  C ) )  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C
) )  <  z
) )
202 simplr 770 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  t  e.  RR+ )
203187, 202sseldi 3416 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  t  e.  RR )
204188adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  RR+ )  ->  B  C_  RR )
205204sselda 3418 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  y  e.  RR )
206 ltle 9740 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  y  e.  RR )  ->  ( t  <  y  ->  t  <_  y )
)
207203, 205, 206syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  (
t  <  y  ->  t  <_  y ) )
208207imim1d 77 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  (
( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )
) )
209208ralimdva 2805 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( A. y  e.  B  (
t  <_  y  ->  ( abs `  ( S  -  C ) )  <  z )  ->  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )
) )
210209reximdva 2858 . . . . . . 7  |-  ( ph  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )
) )
211201, 210syl5 32 . . . . . 6  |-  ( ph  ->  ( E. t  e.  ( 1 [,) +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )
) )
212211ralimdv 2806 . . . . 5  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  ( 1 [,) +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
213190, 212sylbid 223 . . . 4  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  ->  A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
214 ssrexv 3480 . . . . . . 7  |-  ( RR+  C_  RR  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  ->  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
215187, 214ax-mp 5 . . . . . 6  |-  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  ->  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) )
216215ralimi 2796 . . . . 5  |-  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
)  ->  A. z  e.  RR+  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) )
217186, 188, 101rlim2lt 13638 . . . . 5  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  A. z  e.  RR+  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
218216, 217syl5ibr 229 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )  ->  ( y  e.  B  |->  S )  ~~> r  C
) )
219213, 218impbid 195 . . 3  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
220 cnxmet 21871 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
221 xmetres2 21454 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
222220, 148, 221sylancr 676 . . . 4  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
223220a1i 11 . . . 4  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
224 eqid 2471 . . . . 5  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
225 rlimcnp.j . . . . . 6  |-  J  =  ( TopOpen ` fld )
226225cnfldtopn 21880 . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
227224, 226metcnp2 21635 . . . 4  |-  ( ( ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A )  /\  ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  A )  ->  (
( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  (
( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
J ) `  0
)  <->  ( ( x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) ) )
228222, 223, 96, 227syl3anc 1292 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  CnP  J ) `
 0 )  <->  ( (
x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) ) )
229181, 219, 2283bitr4d 293 . 2  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
J ) `  0
) ) )
230 rlimcnp.k . . . . . 6  |-  K  =  ( Jt  A )
231 eqid 2471 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
232231, 226, 224metrest 21617 . . . . . . 7  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( Jt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
233220, 148, 232sylancr 676 . . . . . 6  |-  ( ph  ->  ( Jt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
234230, 233syl5eq 2517 . . . . 5  |-  ( ph  ->  K  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
235234oveq1d 6323 . . . 4  |-  ( ph  ->  ( K  CnP  J
)  =  ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  J ) )
236235fveq1d 5881 . . 3  |-  ( ph  ->  ( ( K  CnP  J ) `  0 )  =  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  J ) `
 0 ) )
237236eleq2d 2534 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  R )  e.  ( ( K  CnP  J ) `  0 )  <-> 
( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  (
( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
J ) `  0
) ) )
238229, 237bitr4d 264 1  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  R )  e.  ( ( K  CnP  J ) `
 0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757    \ cdif 3387    u. cun 3388    C_ wss 3390   {csn 3959   class class class wbr 4395    |-> cmpt 4454    X. cxp 4837    |` cres 4841    o. ccom 4843   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558   +oocpnf 9690   RR*cxr 9692    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   RR+crp 11325   (,)cioo 11660   [,)cico 11662   abscabs 13374    ~~> r crli 13626   ↾t crest 15397   TopOpenctopn 15398   *Metcxmt 19032   MetOpencmopn 19037  ℂfldccnfld 19047    CnP ccnp 20318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ico 11666  df-fz 11811  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-rlim 13630  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-plusg 15281  df-mulr 15282  df-starv 15283  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-rest 15399  df-topn 15400  df-topgen 15420  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-cnp 20321
This theorem is referenced by:  rlimcnp2  23971
  Copyright terms: Public domain W3C validator