MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim1 Structured version   Unicode version

Theorem rlimclim1 13334
Description: Forward direction of rlimclim 13335. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim1.1  |-  Z  =  ( ZZ>= `  M )
rlimclim1.2  |-  ( ph  ->  M  e.  ZZ )
rlimclim1.3  |-  ( ph  ->  F  ~~> r  A )
rlimclim1.4  |-  ( ph  ->  Z  C_  dom  F )
Assertion
Ref Expression
rlimclim1  |-  ( ph  ->  F  ~~>  A )

Proof of Theorem rlimclim1
Dummy variables  j 
k  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5876 . . . . . . 7  |-  ( F `
 w )  e. 
_V
21rgenw 2825 . . . . . 6  |-  A. w  e.  dom  F ( F `
 w )  e. 
_V
32a1i 11 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  A. w  e.  dom  F ( F `
 w )  e. 
_V )
4 simpr 461 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
5 rlimclim1.3 . . . . . . . . 9  |-  ( ph  ->  F  ~~> r  A )
6 rlimf 13290 . . . . . . . . 9  |-  ( F  ~~> r  A  ->  F : dom  F --> CC )
75, 6syl 16 . . . . . . . 8  |-  ( ph  ->  F : dom  F --> CC )
87adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  F : dom  F --> CC )
98feqmptd 5921 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  =  ( w  e.  dom  F 
|->  ( F `  w
) ) )
105adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  ~~> r  A
)
119, 10eqbrtrrd 4469 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( w  e.  dom  F  |->  ( F `
 w ) )  ~~> r  A )
123, 4, 11rlimi 13302 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. z  e.  RR  A. w  e. 
dom  F ( z  <_  w  ->  ( abs `  ( ( F `
 w )  -  A ) )  < 
y ) )
13 rlimclim1.2 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
1413ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  M  e.  ZZ )
15 flcl 11901 . . . . . . . . . 10  |-  ( z  e.  RR  ->  ( |_ `  z )  e.  ZZ )
1615peano2zd 10970 . . . . . . . . 9  |-  ( z  e.  RR  ->  (
( |_ `  z
)  +  1 )  e.  ZZ )
1716ad2antrl 727 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  (
( |_ `  z
)  +  1 )  e.  ZZ )
18 ifcl 3981 . . . . . . . 8  |-  ( ( ( ( |_ `  z )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  ZZ )
1917, 14, 18syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  ZZ )
2014zred 10967 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  M  e.  RR )
2117zred 10967 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  (
( |_ `  z
)  +  1 )  e.  RR )
22 max1 11387 . . . . . . . 8  |-  ( ( M  e.  RR  /\  ( ( |_ `  z )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )
2320, 21, 22syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  M  <_  if ( M  <_ 
( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )
24 eluz2 11089 . . . . . . 7  |-  ( if ( M  <_  (
( |_ `  z
)  +  1 ) ,  ( ( |_
`  z )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  z
)  +  1 ) ,  ( ( |_
`  z )  +  1 ) ,  M
) ) )
2514, 19, 23, 24syl3anbrc 1180 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  ( ZZ>= `  M
) )
26 rlimclim1.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
2725, 26syl6eleqr 2566 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  Z )
28 rlimclim1.4 . . . . . . . . 9  |-  ( ph  ->  Z  C_  dom  F )
2928ad3antrrr 729 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  Z  C_  dom  F )
3026uztrn2 11100 . . . . . . . . 9  |-  ( ( if ( M  <_ 
( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  Z  /\  k  e.  ( ZZ>=
`  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  k  e.  Z )
3127, 30sylan 471 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  k  e.  Z )
3229, 31sseldd 3505 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  k  e.  dom  F )
33 simplrr 760 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  A. w  e.  dom  F ( z  <_  w  ->  ( abs `  ( ( F `
 w )  -  A ) )  < 
y ) )
34 simplrl 759 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  z  e.  RR )
3516zred 10967 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
( |_ `  z
)  +  1 )  e.  RR )
3634, 35syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  ( ( |_ `  z )  +  1 )  e.  RR )
3720adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  M  e.  RR )
38 ifcl 3981 . . . . . . . . 9  |-  ( ( ( ( |_ `  z )  +  1 )  e.  RR  /\  M  e.  RR )  ->  if ( M  <_ 
( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  RR )
3936, 37, 38syl2anc 661 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  e.  RR )
40 eluzelre 11093 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )  ->  k  e.  RR )
4140adantl 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  k  e.  RR )
42 fllep1 11907 . . . . . . . . . 10  |-  ( z  e.  RR  ->  z  <_  ( ( |_ `  z )  +  1 ) )
4334, 42syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  z  <_  ( ( |_ `  z
)  +  1 ) )
44 max2 11389 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  ( ( |_ `  z )  +  1 )  e.  RR )  ->  ( ( |_
`  z )  +  1 )  <_  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )
4537, 36, 44syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  ( ( |_ `  z )  +  1 )  <_  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )
4634, 36, 39, 43, 45letrd 9739 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  z  <_  if ( M  <_  (
( |_ `  z
)  +  1 ) ,  ( ( |_
`  z )  +  1 ) ,  M
) )
47 eluzle 11095 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )  ->  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  <_ 
k )
4847adantl 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  <_ 
k )
4934, 39, 41, 46, 48letrd 9739 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  z  <_  k )
50 breq2 4451 . . . . . . . . 9  |-  ( w  =  k  ->  (
z  <_  w  <->  z  <_  k ) )
51 fveq2 5866 . . . . . . . . . . . 12  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
5251oveq1d 6300 . . . . . . . . . . 11  |-  ( w  =  k  ->  (
( F `  w
)  -  A )  =  ( ( F `
 k )  -  A ) )
5352fveq2d 5870 . . . . . . . . . 10  |-  ( w  =  k  ->  ( abs `  ( ( F `
 w )  -  A ) )  =  ( abs `  (
( F `  k
)  -  A ) ) )
5453breq1d 4457 . . . . . . . . 9  |-  ( w  =  k  ->  (
( abs `  (
( F `  w
)  -  A ) )  <  y  <->  ( abs `  ( ( F `  k )  -  A
) )  <  y
) )
5550, 54imbi12d 320 . . . . . . . 8  |-  ( w  =  k  ->  (
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y )  <-> 
( z  <_  k  ->  ( abs `  (
( F `  k
)  -  A ) )  <  y ) ) )
5655rspcv 3210 . . . . . . 7  |-  ( k  e.  dom  F  -> 
( A. w  e. 
dom  F ( z  <_  w  ->  ( abs `  ( ( F `
 w )  -  A ) )  < 
y )  ->  (
z  <_  k  ->  ( abs `  ( ( F `  k )  -  A ) )  <  y ) ) )
5732, 33, 49, 56syl3c 61 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  ( abs `  ( ( F `  k )  -  A
) )  <  y
)
5857ralrimiva 2878 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  A. k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) ( abs `  (
( F `  k
)  -  A ) )  <  y )
59 fveq2 5866 . . . . . . 7  |-  ( j  =  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  -> 
( ZZ>= `  j )  =  ( ZZ>= `  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) ) )
6059raleqdv 3064 . . . . . 6  |-  ( j  =  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  -> 
( A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  y  <->  A. k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) ( abs `  (
( F `  k
)  -  A ) )  <  y ) )
6160rspcev 3214 . . . . 5  |-  ( ( if ( M  <_ 
( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  Z  /\  A. k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) ( abs `  (
( F `  k
)  -  A ) )  <  y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  A ) )  <  y )
6227, 58, 61syl2anc 661 . . . 4  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  y )
6312, 62rexlimddv 2959 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  y )
6463ralrimiva 2878 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  y
)
65 rlimpm 13289 . . . 4  |-  ( F  ~~> r  A  ->  F  e.  ( CC  ^pm  RR ) )
665, 65syl 16 . . 3  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
67 eqidd 2468 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
68 rlimcl 13292 . . . 4  |-  ( F  ~~> r  A  ->  A  e.  CC )
695, 68syl 16 . . 3  |-  ( ph  ->  A  e.  CC )
7028sselda 3504 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  dom  F )
717ffvelrnda 6022 . . . 4  |-  ( (
ph  /\  k  e.  dom  F )  ->  ( F `  k )  e.  CC )
7270, 71syldan 470 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
7326, 13, 66, 67, 69, 72clim2c 13294 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  y ) )
7464, 73mpbird 232 1  |-  ( ph  ->  F  ~~>  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   -->wf 5584   ` cfv 5588  (class class class)co 6285    ^pm cpm 7422   CCcc 9491   RRcr 9492   1c1 9494    + caddc 9496    < clt 9629    <_ cle 9630    - cmin 9806   ZZcz 10865   ZZ>=cuz 11083   RR+crp 11221   |_cfl 11896   abscabs 13033    ~~> cli 13273    ~~> r crli 13274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-recs 7043  df-rdg 7077  df-er 7312  df-pm 7424  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-n0 10797  df-z 10866  df-uz 11084  df-fl 11898  df-clim 13277  df-rlim 13278
This theorem is referenced by:  rlimclim  13335  dchrisumlema  23498
  Copyright terms: Public domain W3C validator