MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim1 Structured version   Unicode version

Theorem rlimclim1 13023
Description: Forward direction of rlimclim 13024. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim1.1  |-  Z  =  ( ZZ>= `  M )
rlimclim1.2  |-  ( ph  ->  M  e.  ZZ )
rlimclim1.3  |-  ( ph  ->  F  ~~> r  A )
rlimclim1.4  |-  ( ph  ->  Z  C_  dom  F )
Assertion
Ref Expression
rlimclim1  |-  ( ph  ->  F  ~~>  A )

Proof of Theorem rlimclim1
Dummy variables  j 
k  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5701 . . . . . . 7  |-  ( F `
 w )  e. 
_V
21rgenw 2783 . . . . . 6  |-  A. w  e.  dom  F ( F `
 w )  e. 
_V
32a1i 11 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  A. w  e.  dom  F ( F `
 w )  e. 
_V )
4 simpr 461 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
5 rlimclim1.3 . . . . . . . . 9  |-  ( ph  ->  F  ~~> r  A )
6 rlimf 12979 . . . . . . . . 9  |-  ( F  ~~> r  A  ->  F : dom  F --> CC )
75, 6syl 16 . . . . . . . 8  |-  ( ph  ->  F : dom  F --> CC )
87adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  F : dom  F --> CC )
98feqmptd 5744 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  =  ( w  e.  dom  F 
|->  ( F `  w
) ) )
105adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  ~~> r  A
)
119, 10eqbrtrrd 4314 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( w  e.  dom  F  |->  ( F `
 w ) )  ~~> r  A )
123, 4, 11rlimi 12991 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. z  e.  RR  A. w  e. 
dom  F ( z  <_  w  ->  ( abs `  ( ( F `
 w )  -  A ) )  < 
y ) )
13 rlimclim1.2 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
1413ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  M  e.  ZZ )
15 flcl 11645 . . . . . . . . . 10  |-  ( z  e.  RR  ->  ( |_ `  z )  e.  ZZ )
1615peano2zd 10750 . . . . . . . . 9  |-  ( z  e.  RR  ->  (
( |_ `  z
)  +  1 )  e.  ZZ )
1716ad2antrl 727 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  (
( |_ `  z
)  +  1 )  e.  ZZ )
18 ifcl 3831 . . . . . . . 8  |-  ( ( ( ( |_ `  z )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  ZZ )
1917, 14, 18syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  ZZ )
2014zred 10747 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  M  e.  RR )
2117zred 10747 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  (
( |_ `  z
)  +  1 )  e.  RR )
22 max1 11157 . . . . . . . 8  |-  ( ( M  e.  RR  /\  ( ( |_ `  z )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )
2320, 21, 22syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  M  <_  if ( M  <_ 
( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )
24 eluz2 10867 . . . . . . 7  |-  ( if ( M  <_  (
( |_ `  z
)  +  1 ) ,  ( ( |_
`  z )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  z
)  +  1 ) ,  ( ( |_
`  z )  +  1 ) ,  M
) ) )
2514, 19, 23, 24syl3anbrc 1172 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  ( ZZ>= `  M
) )
26 rlimclim1.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
2725, 26syl6eleqr 2534 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  Z )
28 rlimclim1.4 . . . . . . . . 9  |-  ( ph  ->  Z  C_  dom  F )
2928ad3antrrr 729 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  Z  C_  dom  F )
3026uztrn2 10878 . . . . . . . . 9  |-  ( ( if ( M  <_ 
( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  Z  /\  k  e.  ( ZZ>=
`  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  k  e.  Z )
3127, 30sylan 471 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  k  e.  Z )
3229, 31sseldd 3357 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  k  e.  dom  F )
33 simplrr 760 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  A. w  e.  dom  F ( z  <_  w  ->  ( abs `  ( ( F `
 w )  -  A ) )  < 
y ) )
34 simplrl 759 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  z  e.  RR )
3516zred 10747 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
( |_ `  z
)  +  1 )  e.  RR )
3634, 35syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  ( ( |_ `  z )  +  1 )  e.  RR )
3720adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  M  e.  RR )
38 ifcl 3831 . . . . . . . . 9  |-  ( ( ( ( |_ `  z )  +  1 )  e.  RR  /\  M  e.  RR )  ->  if ( M  <_ 
( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  RR )
3936, 37, 38syl2anc 661 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  e.  RR )
40 eluzelre 10871 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )  ->  k  e.  RR )
4140adantl 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  k  e.  RR )
42 fllep1 11651 . . . . . . . . . 10  |-  ( z  e.  RR  ->  z  <_  ( ( |_ `  z )  +  1 ) )
4334, 42syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  z  <_  ( ( |_ `  z
)  +  1 ) )
44 max2 11159 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  ( ( |_ `  z )  +  1 )  e.  RR )  ->  ( ( |_
`  z )  +  1 )  <_  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )
4537, 36, 44syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  ( ( |_ `  z )  +  1 )  <_  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )
4634, 36, 39, 43, 45letrd 9528 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  z  <_  if ( M  <_  (
( |_ `  z
)  +  1 ) ,  ( ( |_
`  z )  +  1 ) ,  M
) )
47 eluzle 10873 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) )  ->  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  <_ 
k )
4847adantl 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  <_ 
k )
4934, 39, 41, 46, 48letrd 9528 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  z  <_  k )
50 breq2 4296 . . . . . . . . 9  |-  ( w  =  k  ->  (
z  <_  w  <->  z  <_  k ) )
51 fveq2 5691 . . . . . . . . . . . 12  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
5251oveq1d 6106 . . . . . . . . . . 11  |-  ( w  =  k  ->  (
( F `  w
)  -  A )  =  ( ( F `
 k )  -  A ) )
5352fveq2d 5695 . . . . . . . . . 10  |-  ( w  =  k  ->  ( abs `  ( ( F `
 w )  -  A ) )  =  ( abs `  (
( F `  k
)  -  A ) ) )
5453breq1d 4302 . . . . . . . . 9  |-  ( w  =  k  ->  (
( abs `  (
( F `  w
)  -  A ) )  <  y  <->  ( abs `  ( ( F `  k )  -  A
) )  <  y
) )
5550, 54imbi12d 320 . . . . . . . 8  |-  ( w  =  k  ->  (
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y )  <-> 
( z  <_  k  ->  ( abs `  (
( F `  k
)  -  A ) )  <  y ) ) )
5655rspcv 3069 . . . . . . 7  |-  ( k  e.  dom  F  -> 
( A. w  e. 
dom  F ( z  <_  w  ->  ( abs `  ( ( F `
 w )  -  A ) )  < 
y )  ->  (
z  <_  k  ->  ( abs `  ( ( F `  k )  -  A ) )  <  y ) ) )
5732, 33, 49, 56syl3c 61 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  ( z  e.  RR  /\ 
A. w  e.  dom  F ( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  /\  k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) )  ->  ( abs `  ( ( F `  k )  -  A
) )  <  y
)
5857ralrimiva 2799 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  A. k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) ( abs `  (
( F `  k
)  -  A ) )  <  y )
59 fveq2 5691 . . . . . . 7  |-  ( j  =  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  -> 
( ZZ>= `  j )  =  ( ZZ>= `  if ( M  <_  ( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M ) ) )
6059raleqdv 2923 . . . . . 6  |-  ( j  =  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M )  -> 
( A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  y  <->  A. k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) ( abs `  (
( F `  k
)  -  A ) )  <  y ) )
6160rspcev 3073 . . . . 5  |-  ( ( if ( M  <_ 
( ( |_ `  z )  +  1 ) ,  ( ( |_ `  z )  +  1 ) ,  M )  e.  Z  /\  A. k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  z )  +  1 ) ,  ( ( |_ `  z
)  +  1 ) ,  M ) ) ( abs `  (
( F `  k
)  -  A ) )  <  y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  A ) )  <  y )
6227, 58, 61syl2anc 661 . . . 4  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
z  e.  RR  /\  A. w  e.  dom  F
( z  <_  w  ->  ( abs `  (
( F `  w
)  -  A ) )  <  y ) ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  y )
6312, 62rexlimddv 2845 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  y )
6463ralrimiva 2799 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  y
)
65 rlimpm 12978 . . . 4  |-  ( F  ~~> r  A  ->  F  e.  ( CC  ^pm  RR ) )
665, 65syl 16 . . 3  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
67 eqidd 2444 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
68 rlimcl 12981 . . . 4  |-  ( F  ~~> r  A  ->  A  e.  CC )
695, 68syl 16 . . 3  |-  ( ph  ->  A  e.  CC )
7028sselda 3356 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  dom  F )
717ffvelrnda 5843 . . . 4  |-  ( (
ph  /\  k  e.  dom  F )  ->  ( F `  k )  e.  CC )
7270, 71syldan 470 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
7326, 13, 66, 67, 69, 72clim2c 12983 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  y ) )
7464, 73mpbird 232 1  |-  ( ph  ->  F  ~~>  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   E.wrex 2716   _Vcvv 2972    C_ wss 3328   ifcif 3791   class class class wbr 4292    e. cmpt 4350   dom cdm 4840   -->wf 5414   ` cfv 5418  (class class class)co 6091    ^pm cpm 7215   CCcc 9280   RRcr 9281   1c1 9283    + caddc 9285    < clt 9418    <_ cle 9419    - cmin 9595   ZZcz 10646   ZZ>=cuz 10861   RR+crp 10991   |_cfl 11640   abscabs 12723    ~~> cli 12962    ~~> r crli 12963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-recs 6832  df-rdg 6866  df-er 7101  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-n0 10580  df-z 10647  df-uz 10862  df-fl 11642  df-clim 12966  df-rlim 12967
This theorem is referenced by:  rlimclim  13024  dchrisumlema  22737
  Copyright terms: Public domain W3C validator