MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcld2 Structured version   Unicode version

Theorem rlimcld2 13483
Description: If  D is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in  D, then the limit of the sequence also lies in 
D. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
rlimcld2.2  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  C
)
rlimcld2.3  |-  ( ph  ->  D  C_  CC )
rlimcld2.4  |-  ( (
ph  /\  y  e.  ( CC  \  D ) )  ->  R  e.  RR+ )
rlimcld2.5  |-  ( ( ( ph  /\  y  e.  ( CC  \  D
) )  /\  z  e.  D )  ->  R  <_  ( abs `  (
z  -  y ) ) )
rlimcld2.6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  D )
Assertion
Ref Expression
rlimcld2  |-  ( ph  ->  C  e.  D )
Distinct variable groups:    x, y,
z, A    y, B, z    x, C, y, z    ph, x, y, z    x, D, y, z    x, R, z
Allowed substitution hints:    B( x)    R( y)

Proof of Theorem rlimcld2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 rlimcld2.6 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  D )
21ralrimiva 2868 . . . 4  |-  ( ph  ->  A. x  e.  A  B  e.  D )
32adantr 463 . . 3  |-  ( (
ph  /\  -.  C  e.  D )  ->  A. x  e.  A  B  e.  D )
4 rlimcld2.2 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  C
)
54adantr 463 . . . . . 6  |-  ( (
ph  /\  -.  C  e.  D )  ->  (
x  e.  A  |->  B )  ~~> r  C )
6 rlimcl 13408 . . . . . 6  |-  ( ( x  e.  A  |->  B )  ~~> r  C  ->  C  e.  CC )
75, 6syl 16 . . . . 5  |-  ( (
ph  /\  -.  C  e.  D )  ->  C  e.  CC )
8 simpr 459 . . . . 5  |-  ( (
ph  /\  -.  C  e.  D )  ->  -.  C  e.  D )
97, 8eldifd 3472 . . . 4  |-  ( (
ph  /\  -.  C  e.  D )  ->  C  e.  ( CC  \  D
) )
10 rlimcld2.4 . . . . . 6  |-  ( (
ph  /\  y  e.  ( CC  \  D ) )  ->  R  e.  RR+ )
1110ralrimiva 2868 . . . . 5  |-  ( ph  ->  A. y  e.  ( CC  \  D ) R  e.  RR+ )
1211adantr 463 . . . 4  |-  ( (
ph  /\  -.  C  e.  D )  ->  A. y  e.  ( CC  \  D
) R  e.  RR+ )
13 nfcsb1v 3436 . . . . . 6  |-  F/_ y [_ C  /  y ]_ R
1413nfel1 2632 . . . . 5  |-  F/ y
[_ C  /  y ]_ R  e.  RR+
15 csbeq1a 3429 . . . . . 6  |-  ( y  =  C  ->  R  =  [_ C  /  y ]_ R )
1615eleq1d 2523 . . . . 5  |-  ( y  =  C  ->  ( R  e.  RR+  <->  [_ C  / 
y ]_ R  e.  RR+ ) )
1714, 16rspc 3201 . . . 4  |-  ( C  e.  ( CC  \  D )  ->  ( A. y  e.  ( CC  \  D ) R  e.  RR+  ->  [_ C  /  y ]_ R  e.  RR+ ) )
189, 12, 17sylc 60 . . 3  |-  ( (
ph  /\  -.  C  e.  D )  ->  [_ C  /  y ]_ R  e.  RR+ )
193, 18, 5rlimi 13418 . 2  |-  ( (
ph  /\  -.  C  e.  D )  ->  E. r  e.  RR  A. x  e.  A  ( r  <_  x  ->  ( abs `  ( B  -  C )
)  <  [_ C  / 
y ]_ R ) )
201adantlr 712 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  C  e.  D )  /\  x  e.  A
)  ->  B  e.  D )
2120adantlr 712 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  B  e.  D )
22 rlimcld2.5 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( CC  \  D
) )  /\  z  e.  D )  ->  R  <_  ( abs `  (
z  -  y ) ) )
2322ralrimiva 2868 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( CC  \  D ) )  ->  A. z  e.  D  R  <_  ( abs `  ( z  -  y ) ) )
2423ralrimiva 2868 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  ( CC  \  D ) A. z  e.  D  R  <_  ( abs `  (
z  -  y ) ) )
2524adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  -.  C  e.  D )  ->  A. y  e.  ( CC  \  D
) A. z  e.  D  R  <_  ( abs `  ( z  -  y ) ) )
26 nfcv 2616 . . . . . . . . . . . 12  |-  F/_ y D
27 nfcv 2616 . . . . . . . . . . . . 13  |-  F/_ y  <_
28 nfcv 2616 . . . . . . . . . . . . 13  |-  F/_ y
( abs `  (
z  -  C ) )
2913, 27, 28nfbr 4483 . . . . . . . . . . . 12  |-  F/ y
[_ C  /  y ]_ R  <_  ( abs `  ( z  -  C
) )
3026, 29nfral 2840 . . . . . . . . . . 11  |-  F/ y A. z  e.  D  [_ C  /  y ]_ R  <_  ( abs `  (
z  -  C ) )
31 oveq2 6278 . . . . . . . . . . . . . 14  |-  ( y  =  C  ->  (
z  -  y )  =  ( z  -  C ) )
3231fveq2d 5852 . . . . . . . . . . . . 13  |-  ( y  =  C  ->  ( abs `  ( z  -  y ) )  =  ( abs `  (
z  -  C ) ) )
3315, 32breq12d 4452 . . . . . . . . . . . 12  |-  ( y  =  C  ->  ( R  <_  ( abs `  (
z  -  y ) )  <->  [_ C  /  y ]_ R  <_  ( abs `  ( z  -  C
) ) ) )
3433ralbidv 2893 . . . . . . . . . . 11  |-  ( y  =  C  ->  ( A. z  e.  D  R  <_  ( abs `  (
z  -  y ) )  <->  A. z  e.  D  [_ C  /  y ]_ R  <_  ( abs `  (
z  -  C ) ) ) )
3530, 34rspc 3201 . . . . . . . . . 10  |-  ( C  e.  ( CC  \  D )  ->  ( A. y  e.  ( CC  \  D ) A. z  e.  D  R  <_  ( abs `  (
z  -  y ) )  ->  A. z  e.  D  [_ C  / 
y ]_ R  <_  ( abs `  ( z  -  C ) ) ) )
369, 25, 35sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  -.  C  e.  D )  ->  A. z  e.  D  [_ C  / 
y ]_ R  <_  ( abs `  ( z  -  C ) ) )
3736ad2antrr 723 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  A. z  e.  D  [_ C  / 
y ]_ R  <_  ( abs `  ( z  -  C ) ) )
38 oveq1 6277 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
z  -  C )  =  ( B  -  C ) )
3938fveq2d 5852 . . . . . . . . . 10  |-  ( z  =  B  ->  ( abs `  ( z  -  C ) )  =  ( abs `  ( B  -  C )
) )
4039breq2d 4451 . . . . . . . . 9  |-  ( z  =  B  ->  ( [_ C  /  y ]_ R  <_  ( abs `  ( z  -  C
) )  <->  [_ C  / 
y ]_ R  <_  ( abs `  ( B  -  C ) ) ) )
4140rspcv 3203 . . . . . . . 8  |-  ( B  e.  D  ->  ( A. z  e.  D  [_ C  /  y ]_ R  <_  ( abs `  (
z  -  C ) )  ->  [_ C  / 
y ]_ R  <_  ( abs `  ( B  -  C ) ) ) )
4221, 37, 41sylc 60 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  [_ C  /  y ]_ R  <_  ( abs `  ( B  -  C )
) )
4318ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  [_ C  /  y ]_ R  e.  RR+ )
4443rpred 11259 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  [_ C  /  y ]_ R  e.  RR )
45 rlimcld2.3 . . . . . . . . . . . 12  |-  ( ph  ->  D  C_  CC )
4645ad3antrrr 727 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  D  C_  CC )
4746, 21sseldd 3490 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  B  e.  CC )
487ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  C  e.  CC )
4947, 48subcld 9922 . . . . . . . . 9  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  ( B  -  C )  e.  CC )
5049abscld 13349 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  ( abs `  ( B  -  C ) )  e.  RR )
5144, 50lenltd 9720 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  ( [_ C  /  y ]_ R  <_  ( abs `  ( B  -  C
) )  <->  -.  ( abs `  ( B  -  C ) )  <  [_ C  /  y ]_ R ) )
5242, 51mpbid 210 . . . . . 6  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  -.  ( abs `  ( B  -  C ) )  <  [_ C  /  y ]_ R )
53 id 22 . . . . . . 7  |-  ( ( r  <_  x  ->  ( abs `  ( B  -  C ) )  <  [_ C  /  y ]_ R )  ->  (
r  <_  x  ->  ( abs `  ( B  -  C ) )  <  [_ C  /  y ]_ R ) )
5453imp 427 . . . . . 6  |-  ( ( ( r  <_  x  ->  ( abs `  ( B  -  C )
)  <  [_ C  / 
y ]_ R )  /\  r  <_  x )  -> 
( abs `  ( B  -  C )
)  <  [_ C  / 
y ]_ R )
5552, 54nsyl 121 . . . . 5  |-  ( ( ( ( ph  /\  -.  C  e.  D
)  /\  r  e.  RR )  /\  x  e.  A )  ->  -.  ( ( r  <_  x  ->  ( abs `  ( B  -  C )
)  <  [_ C  / 
y ]_ R )  /\  r  <_  x ) )
5655nrexdv 2910 . . . 4  |-  ( ( ( ph  /\  -.  C  e.  D )  /\  r  e.  RR )  ->  -.  E. x  e.  A  ( (
r  <_  x  ->  ( abs `  ( B  -  C ) )  <  [_ C  /  y ]_ R )  /\  r  <_  x ) )
57 rlimcld2.1 . . . . . . . 8  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
58 eqid 2454 . . . . . . . . . . . 12  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
5958, 1dmmptd 5693 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
60 rlimss 13407 . . . . . . . . . . . 12  |-  ( ( x  e.  A  |->  B )  ~~> r  C  ->  dom  ( x  e.  A  |->  B )  C_  RR )
614, 60syl 16 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
6259, 61eqsstr3d 3524 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
63 ressxr 9626 . . . . . . . . . 10  |-  RR  C_  RR*
6462, 63syl6ss 3501 . . . . . . . . 9  |-  ( ph  ->  A  C_  RR* )
65 supxrunb1 11514 . . . . . . . . 9  |-  ( A 
C_  RR*  ->  ( A. r  e.  RR  E. x  e.  A  r  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
6664, 65syl 16 . . . . . . . 8  |-  ( ph  ->  ( A. r  e.  RR  E. x  e.  A  r  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
6757, 66mpbird 232 . . . . . . 7  |-  ( ph  ->  A. r  e.  RR  E. x  e.  A  r  <_  x )
6867adantr 463 . . . . . 6  |-  ( (
ph  /\  -.  C  e.  D )  ->  A. r  e.  RR  E. x  e.  A  r  <_  x
)
6968r19.21bi 2823 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  D )  /\  r  e.  RR )  ->  E. x  e.  A  r  <_  x )
70 r19.29 2989 . . . . . 6  |-  ( ( A. x  e.  A  ( r  <_  x  ->  ( abs `  ( B  -  C )
)  <  [_ C  / 
y ]_ R )  /\  E. x  e.  A  r  <_  x )  ->  E. x  e.  A  ( ( r  <_  x  ->  ( abs `  ( B  -  C )
)  <  [_ C  / 
y ]_ R )  /\  r  <_  x ) )
7170expcom 433 . . . . 5  |-  ( E. x  e.  A  r  <_  x  ->  ( A. x  e.  A  ( r  <_  x  ->  ( abs `  ( B  -  C )
)  <  [_ C  / 
y ]_ R )  ->  E. x  e.  A  ( ( r  <_  x  ->  ( abs `  ( B  -  C )
)  <  [_ C  / 
y ]_ R )  /\  r  <_  x ) ) )
7269, 71syl 16 . . . 4  |-  ( ( ( ph  /\  -.  C  e.  D )  /\  r  e.  RR )  ->  ( A. x  e.  A  ( r  <_  x  ->  ( abs `  ( B  -  C
) )  <  [_ C  /  y ]_ R
)  ->  E. x  e.  A  ( (
r  <_  x  ->  ( abs `  ( B  -  C ) )  <  [_ C  /  y ]_ R )  /\  r  <_  x ) ) )
7356, 72mtod 177 . . 3  |-  ( ( ( ph  /\  -.  C  e.  D )  /\  r  e.  RR )  ->  -.  A. x  e.  A  ( r  <_  x  ->  ( abs `  ( B  -  C
) )  <  [_ C  /  y ]_ R
) )
7473nrexdv 2910 . 2  |-  ( (
ph  /\  -.  C  e.  D )  ->  -.  E. r  e.  RR  A. x  e.  A  (
r  <_  x  ->  ( abs `  ( B  -  C ) )  <  [_ C  /  y ]_ R ) )
7519, 74condan 792 1  |-  ( ph  ->  C  e.  D )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   [_csb 3420    \ cdif 3458    C_ wss 3461   class class class wbr 4439    |-> cmpt 4497   dom cdm 4988   ` cfv 5570  (class class class)co 6270   supcsup 7892   CCcc 9479   RRcr 9480   +oocpnf 9614   RR*cxr 9616    < clt 9617    <_ cle 9618    - cmin 9796   RR+crp 11221   abscabs 13149    ~~> r crli 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-seq 12090  df-exp 12149  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-rlim 13394
This theorem is referenced by:  rlimrege0  13484  rlimrecl  13485
  Copyright terms: Public domain W3C validator