MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim3 Unicode version

Theorem rlim3 12247
Description: Restrict the range of the domain bound to reals greater than some  D  e.  RR. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
rlim2.2  |-  ( ph  ->  A  C_  RR )
rlim2.3  |-  ( ph  ->  C  e.  CC )
rlim3.4  |-  ( ph  ->  D  e.  RR )
Assertion
Ref Expression
rlim3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
Distinct variable groups:    x, y,
z, A    x, B, y    x, C, y, z    ph, x, y    y, D, z
Allowed substitution hints:    ph( z)    B( z)    D( x)

Proof of Theorem rlim3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
2 rlim2.2 . . . 4  |-  ( ph  ->  A  C_  RR )
3 rlim2.3 . . . 4  |-  ( ph  ->  C  e.  CC )
41, 2, 3rlim2 12245 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. w  e.  RR  A. z  e.  A  ( w  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
5 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  w  e.  RR )  ->  w  e.  RR )
6 rlim3.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  RR )
76adantr 452 . . . . . . . 8  |-  ( (
ph  /\  w  e.  RR )  ->  D  e.  RR )
8 ifcl 3735 . . . . . . . 8  |-  ( ( w  e.  RR  /\  D  e.  RR )  ->  if ( D  <_  w ,  w ,  D )  e.  RR )
95, 7, 8syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  if ( D  <_  w ,  w ,  D )  e.  RR )
10 max1 10729 . . . . . . . 8  |-  ( ( D  e.  RR  /\  w  e.  RR )  ->  D  <_  if ( D  <_  w ,  w ,  D ) )
116, 10sylan 458 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  D  <_  if ( D  <_  w ,  w ,  D ) )
12 elicopnf 10956 . . . . . . . 8  |-  ( D  e.  RR  ->  ( if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo )  <->  ( if ( D  <_  w ,  w ,  D )  e.  RR  /\  D  <_  if ( D  <_  w ,  w ,  D ) ) ) )
137, 12syl 16 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  ( if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo )  <->  ( if ( D  <_  w ,  w ,  D )  e.  RR  /\  D  <_  if ( D  <_  w ,  w ,  D ) ) ) )
149, 11, 13mpbir2and 889 . . . . . 6  |-  ( (
ph  /\  w  e.  RR )  ->  if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo ) )
152, 6jca 519 . . . . . . 7  |-  ( ph  ->  ( A  C_  RR  /\  D  e.  RR ) )
16 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  D  e.  RR )
17 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  w  e.  RR )
18 max2 10731 . . . . . . . . . . 11  |-  ( ( D  e.  RR  /\  w  e.  RR )  ->  w  <_  if ( D  <_  w ,  w ,  D ) )
1916, 17, 18syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  w  <_  if ( D  <_  w ,  w ,  D ) )
2017, 16, 8syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  if ( D  <_  w ,  w ,  D )  e.  RR )
21 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  ->  A  C_  RR )
2221sselda 3308 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  z  e.  RR )
23 letr 9123 . . . . . . . . . . 11  |-  ( ( w  e.  RR  /\  if ( D  <_  w ,  w ,  D )  e.  RR  /\  z  e.  RR )  ->  (
( w  <_  if ( D  <_  w ,  w ,  D )  /\  if ( D  <_  w ,  w ,  D )  <_  z
)  ->  w  <_  z ) )
2417, 20, 22, 23syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  ( (
w  <_  if ( D  <_  w ,  w ,  D )  /\  if ( D  <_  w ,  w ,  D )  <_  z )  ->  w  <_  z ) )
2519, 24mpand 657 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  w  <_  z ) )
2625imim1d 71 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  /\  z  e.  A
)  ->  ( (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  -> 
( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
2726ralimdva 2744 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  D  e.  RR )  /\  w  e.  RR )  ->  ( A. z  e.  A  ( w  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C ) )  < 
x ) ) )
2815, 27sylan 458 . . . . . 6  |-  ( (
ph  /\  w  e.  RR )  ->  ( A. z  e.  A  (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
29 breq1 4175 . . . . . . . . 9  |-  ( y  =  if ( D  <_  w ,  w ,  D )  ->  (
y  <_  z  <->  if ( D  <_  w ,  w ,  D )  <_  z
) )
3029imbi1d 309 . . . . . . . 8  |-  ( y  =  if ( D  <_  w ,  w ,  D )  ->  (
( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  <->  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3130ralbidv 2686 . . . . . . 7  |-  ( y  =  if ( D  <_  w ,  w ,  D )  ->  ( A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  <->  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3231rspcev 3012 . . . . . 6  |-  ( ( if ( D  <_  w ,  w ,  D )  e.  ( D [,)  +oo )  /\  A. z  e.  A  ( if ( D  <_  w ,  w ,  D )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
)  ->  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
)
3314, 28, 32ee12an 1369 . . . . 5  |-  ( (
ph  /\  w  e.  RR )  ->  ( A. z  e.  A  (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3433rexlimdva 2790 . . . 4  |-  ( ph  ->  ( E. w  e.  RR  A. z  e.  A  ( w  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3534ralimdv 2745 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. w  e.  RR  A. z  e.  A  ( w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
364, 35sylbid 207 . 2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  ->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
37 pnfxr 10669 . . . . . 6  |-  +oo  e.  RR*
38 icossre 10947 . . . . . 6  |-  ( ( D  e.  RR  /\  +oo 
e.  RR* )  ->  ( D [,)  +oo )  C_  RR )
396, 37, 38sylancl 644 . . . . 5  |-  ( ph  ->  ( D [,)  +oo )  C_  RR )
40 ssrexv 3368 . . . . 5  |-  ( ( D [,)  +oo )  C_  RR  ->  ( E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4139, 40syl 16 . . . 4  |-  ( ph  ->  ( E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
4241ralimdv 2745 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  (
y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
431, 2, 3rlim2 12245 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4442, 43sylibrd 226 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  ( z  e.  A  |->  B )  ~~> r  C
) )
4536, 44impbid 184 1  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  ( D [,)  +oo ) A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   ifcif 3699   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945    +oocpnf 9073   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247   RR+crp 10568   [,)cico 10874   abscabs 11994    ~~> r crli 12234
This theorem is referenced by:  rlimresb  12314  rlimsqzlem  12397  rlimcnp  20757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-pre-lttri 9020  ax-pre-lttrn 9021
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-er 6864  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-ico 10878  df-rlim 12238
  Copyright terms: Public domain W3C validator