MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2lt Structured version   Unicode version

Theorem rlim2lt 13376
Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
rlim2.2  |-  ( ph  ->  A  C_  RR )
rlim2.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
rlim2lt  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  < 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
Distinct variable groups:    x, y,
z, A    x, B, y    x, C, y, z    ph, x, y
Allowed substitution hints:    ph( z)    B( z)

Proof of Theorem rlim2lt
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
2 rlim2.2 . . . 4  |-  ( ph  ->  A  C_  RR )
3 rlim2.3 . . . 4  |-  ( ph  ->  C  e.  CC )
41, 2, 3rlim2 13375 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
5 simplr 754 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  y  e.  RR )
6 simpl 455 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  y  e.  RR )  ->  A  C_  RR )
76sselda 3441 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  z  e.  RR )
8 ltle 9624 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  <  z  ->  y  <_  z )
)
95, 7, 8syl2anc 659 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( y  <  z  ->  y  <_  z ) )
109imim1d 75 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( (
y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  -> 
( y  <  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
1110ralimdva 2811 . . . . . 6  |-  ( ( A  C_  RR  /\  y  e.  RR )  ->  ( A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  A. z  e.  A  ( y  <  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
122, 11sylan 469 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. z  e.  A  (
y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. z  e.  A  ( y  <  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
1312reximdva 2878 . . . 4  |-  ( ph  ->  ( E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. y  e.  RR  A. z  e.  A  ( y  < 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
1413ralimdv 2813 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  < 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
154, 14sylbid 215 . 2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  ->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  (
y  <  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
16 peano2re 9707 . . . . . . 7  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
1716adantl 464 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( y  +  1 )  e.  RR )
18 ltp1 10341 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  y  <  ( y  +  1 ) )
1918ad2antlr 725 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  y  <  ( y  +  1 ) )
2016ad2antlr 725 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( y  +  1 )  e.  RR )
21 ltletr 9627 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  ( y  +  1 )  e.  RR  /\  z  e.  RR )  ->  ( ( y  < 
( y  +  1 )  /\  ( y  +  1 )  <_ 
z )  ->  y  <  z ) )
225, 20, 7, 21syl3anc 1230 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( (
y  <  ( y  +  1 )  /\  ( y  +  1 )  <_  z )  ->  y  <  z ) )
2319, 22mpand 673 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( (
y  +  1 )  <_  z  ->  y  <  z ) )
2423imim1d 75 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  y  e.  RR )  /\  z  e.  A
)  ->  ( (
y  <  z  ->  ( abs `  ( B  -  C ) )  <  x )  -> 
( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
2524ralimdva 2811 . . . . . . 7  |-  ( ( A  C_  RR  /\  y  e.  RR )  ->  ( A. z  e.  A  ( y  <  z  ->  ( abs `  ( B  -  C )
)  <  x )  ->  A. z  e.  A  ( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
262, 25sylan 469 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. z  e.  A  (
y  <  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  A. z  e.  A  ( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
27 breq1 4397 . . . . . . . . 9  |-  ( w  =  ( y  +  1 )  ->  (
w  <_  z  <->  ( y  +  1 )  <_ 
z ) )
2827imbi1d 315 . . . . . . . 8  |-  ( w  =  ( y  +  1 )  ->  (
( w  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )  <->  ( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
2928ralbidv 2842 . . . . . . 7  |-  ( w  =  ( y  +  1 )  ->  ( A. z  e.  A  ( w  <_  z  -> 
( abs `  ( B  -  C )
)  <  x )  <->  A. z  e.  A  ( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
3029rspcev 3159 . . . . . 6  |-  ( ( ( y  +  1 )  e.  RR  /\  A. z  e.  A  ( ( y  +  1 )  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) )  ->  E. w  e.  RR  A. z  e.  A  ( w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) )
3117, 26, 30syl6an 543 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. z  e.  A  (
y  <  z  ->  ( abs `  ( B  -  C ) )  <  x )  ->  E. w  e.  RR  A. z  e.  A  ( w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
3231rexlimdva 2895 . . . 4  |-  ( ph  ->  ( E. y  e.  RR  A. z  e.  A  ( y  < 
z  ->  ( abs `  ( B  -  C
) )  <  x
)  ->  E. w  e.  RR  A. z  e.  A  ( w  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3332ralimdv 2813 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <  z  -> 
( abs `  ( B  -  C )
)  <  x )  ->  A. x  e.  RR+  E. w  e.  RR  A. z  e.  A  (
w  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
341, 2, 3rlim2 13375 . . 3  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. w  e.  RR  A. z  e.  A  ( w  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3533, 34sylibrd 234 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <  z  -> 
( abs `  ( B  -  C )
)  <  x )  ->  ( z  e.  A  |->  B )  ~~> r  C
) )
3615, 35impbid 191 1  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  < 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   E.wrex 2754    C_ wss 3413   class class class wbr 4394    |-> cmpt 4452   ` cfv 5525  (class class class)co 6234   CCcc 9440   RRcr 9441   1c1 9443    + caddc 9445    < clt 9578    <_ cle 9579    - cmin 9761   RR+crp 11183   abscabs 13123    ~~> r crli 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-po 4743  df-so 4744  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-er 7268  df-pm 7380  df-en 7475  df-dom 7476  df-sdom 7477  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-rlim 13368
This theorem is referenced by:  rlim0lt  13388  rlimcnp  23513  xrlimcnp  23516
  Copyright terms: Public domain W3C validator