MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2 Structured version   Unicode version

Theorem rlim2 13468
Description: Rewrite rlim 13467 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim2.1  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
rlim2.2  |-  ( ph  ->  A  C_  RR )
rlim2.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
rlim2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
Distinct variable groups:    x, y,
z, A    x, B, y    x, C, y, z    ph, x, y
Allowed substitution hints:    ph( z)    B( z)

Proof of Theorem rlim2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4  |-  ( ph  ->  A. z  e.  A  B  e.  CC )
2 eqid 2402 . . . . 5  |-  ( z  e.  A  |->  B )  =  ( z  e.  A  |->  B )
32fmpt 6030 . . . 4  |-  ( A. z  e.  A  B  e.  CC  <->  ( z  e.  A  |->  B ) : A --> CC )
41, 3sylib 196 . . 3  |-  ( ph  ->  ( z  e.  A  |->  B ) : A --> CC )
5 rlim2.2 . . 3  |-  ( ph  ->  A  C_  RR )
6 eqidd 2403 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( z  e.  A  |->  B ) `  w
)  =  ( ( z  e.  A  |->  B ) `  w ) )
74, 5, 6rlim 13467 . 2  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
) ) ) )
8 rlim2.3 . . 3  |-  ( ph  ->  C  e.  CC )
98biantrurd 506 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  (
y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x ) ) ) )
10 nfv 1728 . . . . . . 7  |-  F/ z  y  <_  w
11 nfcv 2564 . . . . . . . . 9  |-  F/_ z abs
12 nffvmpt1 5857 . . . . . . . . . 10  |-  F/_ z
( ( z  e.  A  |->  B ) `  w )
13 nfcv 2564 . . . . . . . . . 10  |-  F/_ z  -
14 nfcv 2564 . . . . . . . . . 10  |-  F/_ z C
1512, 13, 14nfov 6304 . . . . . . . . 9  |-  F/_ z
( ( ( z  e.  A  |->  B ) `
 w )  -  C )
1611, 15nffv 5856 . . . . . . . 8  |-  F/_ z
( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )
17 nfcv 2564 . . . . . . . 8  |-  F/_ z  <
18 nfcv 2564 . . . . . . . 8  |-  F/_ z
x
1916, 17, 18nfbr 4439 . . . . . . 7  |-  F/ z ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
2010, 19nfim 1948 . . . . . 6  |-  F/ z ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)
21 nfv 1728 . . . . . 6  |-  F/ w
( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
)
22 breq2 4399 . . . . . . 7  |-  ( w  =  z  ->  (
y  <_  w  <->  y  <_  z ) )
23 fveq2 5849 . . . . . . . . . 10  |-  ( w  =  z  ->  (
( z  e.  A  |->  B ) `  w
)  =  ( ( z  e.  A  |->  B ) `  z ) )
2423oveq1d 6293 . . . . . . . . 9  |-  ( w  =  z  ->  (
( ( z  e.  A  |->  B ) `  w )  -  C
)  =  ( ( ( z  e.  A  |->  B ) `  z
)  -  C ) )
2524fveq2d 5853 . . . . . . . 8  |-  ( w  =  z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w )  -  C ) )  =  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) ) )
2625breq1d 4405 . . . . . . 7  |-  ( w  =  z  ->  (
( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x  <->  ( abs `  ( ( ( z  e.  A  |->  B ) `  z
)  -  C ) )  <  x ) )
2722, 26imbi12d 318 . . . . . 6  |-  ( w  =  z  ->  (
( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)  <->  ( y  <_ 
z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `
 z )  -  C ) )  < 
x ) ) )
2820, 21, 27cbvral 3030 . . . . 5  |-  ( A. w  e.  A  (
y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
) )
292fvmpt2 5941 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( z  e.  A  |->  B ) `  z )  =  B )
3029oveq1d 6293 . . . . . . . . . 10  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( ( z  e.  A  |->  B ) `
 z )  -  C )  =  ( B  -  C ) )
3130fveq2d 5853 . . . . . . . . 9  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  =  ( abs `  ( B  -  C ) ) )
3231breq1d 4405 . . . . . . . 8  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x  <->  ( abs `  ( B  -  C ) )  <  x ) )
3332imbi2d 314 . . . . . . 7  |-  ( ( z  e.  A  /\  B  e.  CC )  ->  ( ( y  <_ 
z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `
 z )  -  C ) )  < 
x )  <->  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3433ralimiaa 2796 . . . . . 6  |-  ( A. z  e.  A  B  e.  CC  ->  A. z  e.  A  ( (
y  <_  z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  z
)  -  C ) )  <  x )  <-> 
( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
35 ralbi 2938 . . . . . 6  |-  ( A. z  e.  A  (
( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
)  <->  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) )  ->  ( A. z  e.  A  ( y  <_  z  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  z )  -  C
) )  <  x
)  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
361, 34, 353syl 18 . . . . 5  |-  ( ph  ->  ( A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `
 z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
3728, 36syl5bb 257 . . . 4  |-  ( ph  ->  ( A. w  e.  A  ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
3837rexbidv 2918 . . 3  |-  ( ph  ->  ( E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  (
( ( z  e.  A  |->  B ) `  w )  -  C
) )  <  x
)  <->  E. y  e.  RR  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C ) )  <  x ) ) )
3938ralbidv 2843 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. w  e.  A  ( y  <_  w  ->  ( abs `  ( ( ( z  e.  A  |->  B ) `  w
)  -  C ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
407, 9, 393bitr2d 281 1  |-  ( ph  ->  ( ( z  e.  A  |->  B )  ~~> r  C  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    e. wcel 1842   A.wral 2754   E.wrex 2755    C_ wss 3414   class class class wbr 4395    |-> cmpt 4453   -->wf 5565   ` cfv 5569  (class class class)co 6278   CCcc 9520   RRcr 9521    < clt 9658    <_ cle 9659    - cmin 9841   RR+crp 11265   abscabs 13216    ~~> r crli 13457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-pm 7460  df-rlim 13461
This theorem is referenced by:  rlim2lt  13469  rlim3  13470  rlim0  13480  rlimi  13485  rlimconst  13516  climrlim2  13519  rlimcn1  13560  rlimcn2  13562  chtppilim  24041  pntlem3  24175
  Copyright terms: Public domain W3C validator