MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim Structured version   Unicode version

Theorem rlim 13502
Description: Express the predicate: The limit of complex number function  F is  C, or  F converges to  C, in the real sense. This means that for any real  x, no matter how small, there always exists a number  y such that the absolute difference of any number in the function beyond  y and the limit is less than  x. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
rlim.1  |-  ( ph  ->  F : A --> CC )
rlim.2  |-  ( ph  ->  A  C_  RR )
rlim.4  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  B )
Assertion
Ref Expression
rlim  |-  ( ph  ->  ( F  ~~> r  C  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) ) )
Distinct variable groups:    z, A    x, y, z, C    x, F, y, z    ph, x, y, z
Allowed substitution hints:    A( x, y)    B( x, y, z)

Proof of Theorem rlim
Dummy variables  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimrel 13500 . . . . 5  |-  Rel  ~~> r
21brrelex2i 4838 . . . 4  |-  ( F  ~~> r  C  ->  C  e.  _V )
32a1i 11 . . 3  |-  ( ph  ->  ( F  ~~> r  C  ->  C  e.  _V )
)
4 elex 3031 . . . . 5  |-  ( C  e.  CC  ->  C  e.  _V )
54ad2antrl 732 . . . 4  |-  ( ( F  e.  ( CC 
^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )  ->  C  e.  _V )
65a1i 11 . . 3  |-  ( ph  ->  ( ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )  ->  C  e.  _V ) )
7 rlim.1 . . . . 5  |-  ( ph  ->  F : A --> CC )
8 rlim.2 . . . . 5  |-  ( ph  ->  A  C_  RR )
9 cnex 9571 . . . . . 6  |-  CC  e.  _V
10 reex 9581 . . . . . 6  |-  RR  e.  _V
11 elpm2r 7444 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  RR  e.  _V )  /\  ( F : A --> CC  /\  A  C_  RR ) )  ->  F  e.  ( CC  ^pm  RR ) )
129, 10, 11mpanl12 686 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
137, 8, 12syl2anc 665 . . . 4  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
14 eleq1 2494 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  e.  ( CC 
^pm  RR )  <->  F  e.  ( CC  ^pm  RR ) ) )
15 eleq1 2494 . . . . . . . . 9  |-  ( w  =  C  ->  (
w  e.  CC  <->  C  e.  CC ) )
1614, 15bi2anan9 881 . . . . . . . 8  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( f  e.  ( CC  ^pm  RR )  /\  w  e.  CC ) 
<->  ( F  e.  ( CC  ^pm  RR )  /\  C  e.  CC ) ) )
17 simpl 458 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  w  =  C )  ->  f  =  F )
1817dmeqd 4999 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  w  =  C )  ->  dom  f  =  dom  F )
19 fveq1 5824 . . . . . . . . . . . . . . 15  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
20 oveq12 6258 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  z
)  =  ( F `
 z )  /\  w  =  C )  ->  ( ( f `  z )  -  w
)  =  ( ( F `  z )  -  C ) )
2119, 20sylan 473 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( f `  z )  -  w
)  =  ( ( F `  z )  -  C ) )
2221fveq2d 5829 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  w  =  C )  ->  ( abs `  (
( f `  z
)  -  w ) )  =  ( abs `  ( ( F `  z )  -  C
) ) )
2322breq1d 4376 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( abs `  (
( f `  z
)  -  w ) )  <  x  <->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )
2423imbi2d 317 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( y  <_ 
z  ->  ( abs `  ( ( f `  z )  -  w
) )  <  x
)  <->  ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
2518, 24raleqbidv 2978 . . . . . . . . . 10  |-  ( ( f  =  F  /\  w  =  C )  ->  ( A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x )  <->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
2625rexbidv 2878 . . . . . . . . 9  |-  ( ( f  =  F  /\  w  =  C )  ->  ( E. y  e.  RR  A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x )  <->  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
2726ralbidv 2804 . . . . . . . 8  |-  ( ( f  =  F  /\  w  =  C )  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  f
( y  <_  z  ->  ( abs `  (
( f `  z
)  -  w ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
2816, 27anbi12d 715 . . . . . . 7  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( ( f  e.  ( CC  ^pm  RR )  /\  w  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x ) )  <->  ( ( F  e.  ( CC  ^pm 
RR )  /\  C  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
29 df-rlim 13496 . . . . . . 7  |-  ~~> r  =  { <. f ,  w >.  |  ( ( f  e.  ( CC  ^pm  RR )  /\  w  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x ) ) }
3028, 29brabga 4677 . . . . . 6  |-  ( ( F  e.  ( CC 
^pm  RR )  /\  C  e.  _V )  ->  ( F 
~~> r  C  <->  ( ( F  e.  ( CC  ^pm 
RR )  /\  C  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
31 anass 653 . . . . . 6  |-  ( ( ( F  e.  ( CC  ^pm  RR )  /\  C  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x ) )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
3230, 31syl6bb 264 . . . . 5  |-  ( ( F  e.  ( CC 
^pm  RR )  /\  C  e.  _V )  ->  ( F 
~~> r  C  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) )
3332ex 435 . . . 4  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( C  e.  _V  ->  ( F  ~~> r  C  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) ) )
3413, 33syl 17 . . 3  |-  ( ph  ->  ( C  e.  _V  ->  ( F  ~~> r  C  <->  ( F  e.  ( CC 
^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) ) )
353, 6, 34pm5.21ndd 355 . 2  |-  ( ph  ->  ( F  ~~> r  C  <->  ( F  e.  ( CC 
^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) )
3613biantrurd 510 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) )
37 fdm 5693 . . . . . . . 8  |-  ( F : A --> CC  ->  dom 
F  =  A )
387, 37syl 17 . . . . . . 7  |-  ( ph  ->  dom  F  =  A )
3938raleqdv 2970 . . . . . 6  |-  ( ph  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
40 rlim.4 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  B )
4140oveq1d 6264 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  (
( F `  z
)  -  C )  =  ( B  -  C ) )
4241fveq2d 5829 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  ( abs `  ( ( F `
 z )  -  C ) )  =  ( abs `  ( B  -  C )
) )
4342breq1d 4376 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  (
( abs `  (
( F `  z
)  -  C ) )  <  x  <->  ( abs `  ( B  -  C
) )  <  x
) )
4443imbi2d 317 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  (
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x )  <-> 
( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
4544ralbidva 2801 . . . . . 6  |-  ( ph  ->  ( A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
)  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
4639, 45bitrd 256 . . . . 5  |-  ( ph  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4746rexbidv 2878 . . . 4  |-  ( ph  ->  ( E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x )  <->  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4847ralbidv 2804 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4948anbi2d 708 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) ) )
5035, 36, 493bitr2d 284 1  |-  ( ph  ->  ( F  ~~> r  C  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2714   E.wrex 2715   _Vcvv 3022    C_ wss 3379   class class class wbr 4366   dom cdm 4796   -->wf 5540   ` cfv 5544  (class class class)co 6249    ^pm cpm 7428   CCcc 9488   RRcr 9489    < clt 9626    <_ cle 9627    - cmin 9811   RR+crp 11253   abscabs 13241    ~~> r crli 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-fv 5552  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-pm 7430  df-rlim 13496
This theorem is referenced by:  rlim2  13503  rlimcl  13510  rlimclim  13553  rlimres  13565  caurcvgr  13681  caurcvgrOLD  13682
  Copyright terms: Public domain W3C validator