MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim Structured version   Unicode version

Theorem rlim 13330
Description: Express the predicate: The limit of complex number function  F is  C, or  F converges to  C, in the real sense. This means that for any real  x, no matter how small, there always exists a number  y such that the absolute difference of any number in the function beyond  y and the limit is less than  x. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
rlim.1  |-  ( ph  ->  F : A --> CC )
rlim.2  |-  ( ph  ->  A  C_  RR )
rlim.4  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  B )
Assertion
Ref Expression
rlim  |-  ( ph  ->  ( F  ~~> r  C  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) ) )
Distinct variable groups:    z, A    x, y, z, C    x, F, y, z    ph, x, y, z
Allowed substitution hints:    A( x, y)    B( x, y, z)

Proof of Theorem rlim
Dummy variables  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimrel 13328 . . . . 5  |-  Rel  ~~> r
21brrelex2i 5050 . . . 4  |-  ( F  ~~> r  C  ->  C  e.  _V )
32a1i 11 . . 3  |-  ( ph  ->  ( F  ~~> r  C  ->  C  e.  _V )
)
4 elex 3118 . . . . 5  |-  ( C  e.  CC  ->  C  e.  _V )
54ad2antrl 727 . . . 4  |-  ( ( F  e.  ( CC 
^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )  ->  C  e.  _V )
65a1i 11 . . 3  |-  ( ph  ->  ( ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )  ->  C  e.  _V ) )
7 rlim.1 . . . . 5  |-  ( ph  ->  F : A --> CC )
8 rlim.2 . . . . 5  |-  ( ph  ->  A  C_  RR )
9 cnex 9590 . . . . . 6  |-  CC  e.  _V
10 reex 9600 . . . . . 6  |-  RR  e.  _V
11 elpm2r 7455 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  RR  e.  _V )  /\  ( F : A --> CC  /\  A  C_  RR ) )  ->  F  e.  ( CC  ^pm  RR ) )
129, 10, 11mpanl12 682 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
137, 8, 12syl2anc 661 . . . 4  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
14 eleq1 2529 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  e.  ( CC 
^pm  RR )  <->  F  e.  ( CC  ^pm  RR ) ) )
15 eleq1 2529 . . . . . . . . 9  |-  ( w  =  C  ->  (
w  e.  CC  <->  C  e.  CC ) )
1614, 15bi2anan9 873 . . . . . . . 8  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( f  e.  ( CC  ^pm  RR )  /\  w  e.  CC ) 
<->  ( F  e.  ( CC  ^pm  RR )  /\  C  e.  CC ) ) )
17 simpl 457 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  w  =  C )  ->  f  =  F )
1817dmeqd 5215 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  w  =  C )  ->  dom  f  =  dom  F )
19 fveq1 5871 . . . . . . . . . . . . . . 15  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
20 oveq12 6305 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  z
)  =  ( F `
 z )  /\  w  =  C )  ->  ( ( f `  z )  -  w
)  =  ( ( F `  z )  -  C ) )
2119, 20sylan 471 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( f `  z )  -  w
)  =  ( ( F `  z )  -  C ) )
2221fveq2d 5876 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  w  =  C )  ->  ( abs `  (
( f `  z
)  -  w ) )  =  ( abs `  ( ( F `  z )  -  C
) ) )
2322breq1d 4466 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( abs `  (
( f `  z
)  -  w ) )  <  x  <->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )
2423imbi2d 316 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( y  <_ 
z  ->  ( abs `  ( ( f `  z )  -  w
) )  <  x
)  <->  ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
2518, 24raleqbidv 3068 . . . . . . . . . 10  |-  ( ( f  =  F  /\  w  =  C )  ->  ( A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x )  <->  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
2625rexbidv 2968 . . . . . . . . 9  |-  ( ( f  =  F  /\  w  =  C )  ->  ( E. y  e.  RR  A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x )  <->  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
2726ralbidv 2896 . . . . . . . 8  |-  ( ( f  =  F  /\  w  =  C )  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  f
( y  <_  z  ->  ( abs `  (
( f `  z
)  -  w ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
2816, 27anbi12d 710 . . . . . . 7  |-  ( ( f  =  F  /\  w  =  C )  ->  ( ( ( f  e.  ( CC  ^pm  RR )  /\  w  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x ) )  <->  ( ( F  e.  ( CC  ^pm 
RR )  /\  C  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
29 df-rlim 13324 . . . . . . 7  |-  ~~> r  =  { <. f ,  w >.  |  ( ( f  e.  ( CC  ^pm  RR )  /\  w  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  f ( y  <_  z  ->  ( abs `  ( ( f `
 z )  -  w ) )  < 
x ) ) }
3028, 29brabga 4770 . . . . . 6  |-  ( ( F  e.  ( CC 
^pm  RR )  /\  C  e.  _V )  ->  ( F 
~~> r  C  <->  ( ( F  e.  ( CC  ^pm 
RR )  /\  C  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
31 anass 649 . . . . . 6  |-  ( ( ( F  e.  ( CC  ^pm  RR )  /\  C  e.  CC )  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x ) )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
3230, 31syl6bb 261 . . . . 5  |-  ( ( F  e.  ( CC 
^pm  RR )  /\  C  e.  _V )  ->  ( F 
~~> r  C  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) )
3332ex 434 . . . 4  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( C  e.  _V  ->  ( F  ~~> r  C  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) ) )
3413, 33syl 16 . . 3  |-  ( ph  ->  ( C  e.  _V  ->  ( F  ~~> r  C  <->  ( F  e.  ( CC 
^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) ) )
353, 6, 34pm5.21ndd 354 . 2  |-  ( ph  ->  ( F  ~~> r  C  <->  ( F  e.  ( CC 
^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) )
3613biantrurd 508 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) )  <->  ( F  e.  ( CC  ^pm  RR )  /\  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) ) )
37 fdm 5741 . . . . . . . 8  |-  ( F : A --> CC  ->  dom 
F  =  A )
387, 37syl 16 . . . . . . 7  |-  ( ph  ->  dom  F  =  A )
3938raleqdv 3060 . . . . . 6  |-  ( ph  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
40 rlim.4 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  B )
4140oveq1d 6311 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  (
( F `  z
)  -  C )  =  ( B  -  C ) )
4241fveq2d 5876 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  ( abs `  ( ( F `
 z )  -  C ) )  =  ( abs `  ( B  -  C )
) )
4342breq1d 4466 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  (
( abs `  (
( F `  z
)  -  C ) )  <  x  <->  ( abs `  ( B  -  C
) )  <  x
) )
4443imbi2d 316 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  (
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x )  <-> 
( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
4544ralbidva 2893 . . . . . 6  |-  ( ph  ->  ( A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
)  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C )
)  <  x )
) )
4639, 45bitrd 253 . . . . 5  |-  ( ph  ->  ( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x )  <->  A. z  e.  A  ( y  <_  z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4746rexbidv 2968 . . . 4  |-  ( ph  ->  ( E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x )  <->  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4847ralbidv 2896 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  F
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x )  <->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) )
4948anbi2d 703 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) ) )
5035, 36, 493bitr2d 281 1  |-  ( ph  ->  ( F  ~~> r  C  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  A  ( y  <_ 
z  ->  ( abs `  ( B  -  C
) )  <  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   _Vcvv 3109    C_ wss 3471   class class class wbr 4456   dom cdm 5008   -->wf 5590   ` cfv 5594  (class class class)co 6296    ^pm cpm 7439   CCcc 9507   RRcr 9508    < clt 9645    <_ cle 9646    - cmin 9824   RR+crp 11245   abscabs 13079    ~~> r crli 13320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-pm 7441  df-rlim 13324
This theorem is referenced by:  rlim2  13331  rlimcl  13338  rlimclim  13381  rlimres  13393  caurcvgr  13508
  Copyright terms: Public domain W3C validator