Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riscer Structured version   Unicode version

Theorem riscer 30010
Description: Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
riscer  |-  ~=R  Er  dom  ~=R

Proof of Theorem riscer
Dummy variables  f 
g  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-risc 30005 . . 3  |-  ~=R  =  { <. r ,  s
>.  |  ( (
r  e.  RingOps  /\  s  e.  RingOps )  /\  E. f  f  e.  (
r  RngIso  s ) ) }
21relopabi 5127 . 2  |-  Rel  ~=R
3 eqid 2467 . 2  |-  dom  ~=R  =  dom  ~=R
4 vex 3116 . . . . . . 7  |-  r  e. 
_V
5 vex 3116 . . . . . . 7  |-  s  e. 
_V
64, 5isrisc 30007 . . . . . 6  |-  ( r 
~=R  s  <->  ( (
r  e.  RingOps  /\  s  e.  RingOps )  /\  E. f  f  e.  (
r  RngIso  s ) ) )
7 rngoisocnv 30003 . . . . . . . . . 10  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  f  e.  ( r  RngIso  s ) )  ->  `' f  e.  ( s  RngIso  r ) )
873expia 1198 . . . . . . . . 9  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps )  ->  (
f  e.  ( r 
RngIso  s )  ->  `' f  e.  ( s  RngIso  r ) ) )
9 risci 30009 . . . . . . . . . . 11  |-  ( ( s  e.  RingOps  /\  r  e.  RingOps  /\  `' f  e.  ( s  RngIso  r ) )  ->  s  ~=R  r )
1093expia 1198 . . . . . . . . . 10  |-  ( ( s  e.  RingOps  /\  r  e.  RingOps )  ->  ( `' f  e.  (
s  RngIso  r )  -> 
s  ~=R  r )
)
1110ancoms 453 . . . . . . . . 9  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps )  ->  ( `' f  e.  (
s  RngIso  r )  -> 
s  ~=R  r )
)
128, 11syld 44 . . . . . . . 8  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps )  ->  (
f  e.  ( r 
RngIso  s )  ->  s  ~=R  r ) )
1312exlimdv 1700 . . . . . . 7  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps )  ->  ( E. f  f  e.  ( r  RngIso  s )  ->  s  ~=R  r
) )
1413imp 429 . . . . . 6  |-  ( ( ( r  e.  RingOps  /\  s  e.  RingOps )  /\  E. f  f  e.  ( r  RngIso  s ) )  ->  s  ~=R  r
)
156, 14sylbi 195 . . . . 5  |-  ( r 
~=R  s  ->  s  ~=R  r )
16 vex 3116 . . . . . . 7  |-  t  e. 
_V
175, 16isrisc 30007 . . . . . 6  |-  ( s 
~=R  t  <->  ( (
s  e.  RingOps  /\  t  e.  RingOps )  /\  E. g  g  e.  (
s  RngIso  t ) ) )
18 eeanv 1957 . . . . . . . . . . 11  |-  ( E. f E. g ( f  e.  ( r 
RngIso  s )  /\  g  e.  ( s  RngIso  t ) )  <->  ( E. f 
f  e.  ( r 
RngIso  s )  /\  E. g  g  e.  (
s  RngIso  t ) ) )
19 rngoisoco 30004 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  /\  (
f  e.  ( r 
RngIso  s )  /\  g  e.  ( s  RngIso  t ) ) )  ->  (
g  o.  f )  e.  ( r  RngIso  t ) )
2019ex 434 . . . . . . . . . . . . 13  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  ->  ( ( f  e.  ( r  RngIso  s )  /\  g  e.  ( s  RngIso  t ) )  ->  ( g  o.  f )  e.  ( r  RngIso  t ) ) )
21 risci 30009 . . . . . . . . . . . . . . 15  |-  ( ( r  e.  RingOps  /\  t  e.  RingOps  /\  ( g  o.  f )  e.  ( r  RngIso  t ) )  ->  r  ~=R  t
)
22213expia 1198 . . . . . . . . . . . . . 14  |-  ( ( r  e.  RingOps  /\  t  e.  RingOps )  ->  (
( g  o.  f
)  e.  ( r 
RngIso  t )  ->  r  ~=R  t ) )
23223adant2 1015 . . . . . . . . . . . . 13  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  ->  ( ( g  o.  f )  e.  ( r  RngIso  t )  ->  r  ~=R  t
) )
2420, 23syld 44 . . . . . . . . . . . 12  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  ->  ( ( f  e.  ( r  RngIso  s )  /\  g  e.  ( s  RngIso  t ) )  ->  r  ~=R  t ) )
2524exlimdvv 1701 . . . . . . . . . . 11  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  ->  ( E. f E. g ( f  e.  ( r  RngIso  s )  /\  g  e.  ( s  RngIso  t ) )  ->  r  ~=R  t
) )
2618, 25syl5bir 218 . . . . . . . . . 10  |-  ( ( r  e.  RingOps  /\  s  e.  RingOps  /\  t  e.  RingOps )  ->  ( ( E. f  f  e.  ( r  RngIso  s )  /\  E. g  g  e.  ( s  RngIso  t ) )  ->  r  ~=R  t
) )
27263expb 1197 . . . . . . . . 9  |-  ( ( r  e.  RingOps  /\  (
s  e.  RingOps  /\  t  e.  RingOps ) )  -> 
( ( E. f 
f  e.  ( r 
RngIso  s )  /\  E. g  g  e.  (
s  RngIso  t ) )  ->  r  ~=R  t
) )
2827adantlr 714 . . . . . . . 8  |-  ( ( ( r  e.  RingOps  /\  s  e.  RingOps )  /\  ( s  e.  RingOps  /\  t  e.  RingOps ) )  ->  ( ( E. f  f  e.  ( r  RngIso  s )  /\  E. g  g  e.  ( s  RngIso  t ) )  ->  r  ~=R  t
) )
2928imp 429 . . . . . . 7  |-  ( ( ( ( r  e.  RingOps 
/\  s  e.  RingOps )  /\  ( s  e.  RingOps 
/\  t  e.  RingOps ) )  /\  ( E. f  f  e.  ( r  RngIso  s )  /\  E. g  g  e.  ( s  RngIso  t ) ) )  ->  r  ~=R  t )
3029an4s 824 . . . . . 6  |-  ( ( ( ( r  e.  RingOps 
/\  s  e.  RingOps )  /\  E. f  f  e.  ( r  RngIso  s ) )  /\  (
( s  e.  RingOps  /\  t  e.  RingOps )  /\  E. g  g  e.  ( s  RngIso  t ) ) )  ->  r  ~=R  t )
316, 17, 30syl2anb 479 . . . . 5  |-  ( ( r  ~=R  s  /\  s  ~=R  t )  -> 
r  ~=R  t )
3215, 31pm3.2i 455 . . . 4  |-  ( ( r  ~=R  s  ->  s 
~=R  r )  /\  ( ( r  ~=R  s  /\  s  ~=R  t
)  ->  r  ~=R  t ) )
3332ax-gen 1601 . . 3  |-  A. t
( ( r  ~=R  s  ->  s  ~=R  r
)  /\  ( (
r  ~=R  s  /\  s  ~=R  t )  -> 
r  ~=R  t )
)
3433gen2 1602 . 2  |-  A. r A. s A. t ( ( r  ~=R  s  ->  s  ~=R  r )  /\  ( ( r  ~=R  s  /\  s  ~=R  t
)  ->  r  ~=R  t ) )
35 dfer2 7312 . 2  |-  (  ~=R  Er 
dom  ~=R  <->  ( Rel  ~=R  /\  dom  ~=R  =  dom  ~=R  /\  A. r A. s A. t
( ( r  ~=R  s  ->  s  ~=R  r
)  /\  ( (
r  ~=R  s  /\  s  ~=R  t )  -> 
r  ~=R  t )
) ) )
362, 3, 34, 35mpbir3an 1178 1  |-  ~=R  Er  dom  ~=R
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379   E.wex 1596    e. wcel 1767   class class class wbr 4447   `'ccnv 4998   dom cdm 4999    o. ccom 5003   Rel wrel 5004  (class class class)co 6283    Er wer 7308   RingOpscrngo 25069    RngIso crngiso 29983    ~=R crisc 29984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-1st 6784  df-2nd 6785  df-er 7311  df-map 7422  df-grpo 24885  df-gid 24886  df-ablo 24976  df-ass 25007  df-exid 25009  df-mgm 25013  df-sgr 25025  df-mndo 25032  df-rngo 25070  df-rngohom 29985  df-rngoiso 29998  df-risc 30005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator