Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotauni Structured version   Unicode version

Theorem riotauni 6269
 Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
Assertion
Ref Expression
riotauni

Proof of Theorem riotauni
StepHypRef Expression
1 df-reu 2782 . . 3
2 iotauni 5573 . . 3
31, 2sylbi 198 . 2
4 df-riota 6263 . 2
5 df-rab 2784 . . 3
65unieqi 4225 . 2
73, 4, 63eqtr4g 2488 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 370   wceq 1437   wcel 1868  weu 2265  cab 2407  wreu 2777  crab 2779  cuni 4216  cio 5559  crio 6262 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-un 3441  df-sn 3997  df-pr 3999  df-uni 4217  df-iota 5561  df-riota 6263 This theorem is referenced by:  riotassuni  6299  supval2  7971  dfac2a  8560
 Copyright terms: Public domain W3C validator