Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv2s Structured version   Unicode version

Theorem riotasv2s 35086
Description: The value of description binder  D for a single-valued class expression  C ( y ) (as in e.g. reusv2 4643) in the form of a substitution instance. Special case of riota2f 6253. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypothesis
Ref Expression
riotasv2s.2  |-  D  =  ( iota_ x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) )
Assertion
Ref Expression
riotasv2s  |-  ( ( A  e.  V  /\  D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  ->  D  =  [_ E  / 
y ]_ C )
Distinct variable groups:    x, y, A    x, B, y    x, C    x, E, y    ph, x
Allowed substitution hints:    ph( y)    C( y)    D( x, y)    V( x, y)

Proof of Theorem riotasv2s
StepHypRef Expression
1 3simpc 993 . 2  |-  ( ( A  e.  V  /\  D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  -> 
( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) ) )
2 simp1 994 . 2  |-  ( ( A  e.  V  /\  D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  ->  A  e.  V )
3 riotasv2s.2 . . . . . 6  |-  D  =  ( iota_ x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) )
4 nfra1 2835 . . . . . . 7  |-  F/ y A. y  e.  B  ( ph  ->  x  =  C )
5 nfcv 2616 . . . . . . 7  |-  F/_ y A
64, 5nfriota 6241 . . . . . 6  |-  F/_ y
( iota_ x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) )
73, 6nfcxfr 2614 . . . . 5  |-  F/_ y D
87nfel1 2632 . . . 4  |-  F/ y  D  e.  A
9 nfv 1712 . . . . 5  |-  F/ y  E  e.  B
10 nfsbc1v 3344 . . . . 5  |-  F/ y
[. E  /  y ]. ph
119, 10nfan 1933 . . . 4  |-  F/ y ( E  e.  B  /\  [. E  /  y ]. ph )
128, 11nfan 1933 . . 3  |-  F/ y ( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )
13 nfcsb1v 3436 . . . 4  |-  F/_ y [_ E  /  y ]_ C
1413a1i 11 . . 3  |-  ( ( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  ->  F/_ y [_ E  / 
y ]_ C )
1510a1i 11 . . 3  |-  ( ( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  ->  F/ y [. E  / 
y ]. ph )
163a1i 11 . . 3  |-  ( ( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  ->  D  =  ( iota_ x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
17 sbceq1a 3335 . . . 4  |-  ( y  =  E  ->  ( ph 
<-> 
[. E  /  y ]. ph ) )
1817adantl 464 . . 3  |-  ( ( ( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  /\  y  =  E )  ->  ( ph  <->  [. E  / 
y ]. ph ) )
19 csbeq1a 3429 . . . 4  |-  ( y  =  E  ->  C  =  [_ E  /  y ]_ C )
2019adantl 464 . . 3  |-  ( ( ( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  /\  y  =  E )  ->  C  =  [_ E  /  y ]_ C
)
21 simpl 455 . . 3  |-  ( ( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  ->  D  e.  A )
22 simprl 754 . . 3  |-  ( ( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  ->  E  e.  B )
23 simprr 755 . . 3  |-  ( ( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  ->  [. E  /  y ]. ph )
2412, 14, 15, 16, 18, 20, 21, 22, 23riotasv2d 35085 . 2  |-  ( ( ( D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  /\  A  e.  V )  ->  D  =  [_ E  /  y ]_ C
)
251, 2, 24syl2anc 659 1  |-  ( ( A  e.  V  /\  D  e.  A  /\  ( E  e.  B  /\  [. E  /  y ]. ph ) )  ->  D  =  [_ E  / 
y ]_ C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398   F/wnf 1621    e. wcel 1823   F/_wnfc 2602   A.wral 2804   [.wsbc 3324   [_csb 3420   iota_crio 6231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-riotaBAD 35081
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-riota 6232  df-undef 6994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator